XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(7):27-32.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
可控阵列微柱超疏水表面实验研究
- Title:
- Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns
- 文献标志码:
- A
- 摘要:
- 为了提高超疏水表面的结构稳定性,采用慢走丝电火花线切割技术在铝合金表面加工阵列微柱结构,结合电化学方法在微柱上沉积纳米颗粒,无需进一步修饰,直接得到超疏水表面。实验主要研究了电沉积时间对超疏水性能的影响,通过扫描电子显微镜,激光共聚焦显微镜,接触角测量仪等表征手段检测超疏水表面形貌和润湿特性,利用傅里叶变换红外光谱仪和能谱仪检测表面化学成分。结果表明,所制备的样品接触角能达到161.88°,滚动角只有3°,表现出极低的粘附性,相比于平面直接沉积结构更稳定,在外力作用下能维持更久的超疏水特性。该方法能实现对规则结构尺寸的可控性,应用范围广泛。
- Abstract:
- Aiming at improving the structural stability of the superhydrophobic surface, an array of micropillar structures was processed on the surface of the aluminum alloy by using low-speed electrical discharge wire-cutting(EDM) technology, and the nanoparticles were deposited on the micropillars in ctombination with electrochemical methods without further modification to directly obtain the superhydrophobic surface. The effect of electrodeposition time was mainly studied on superhydrophobic performance. The SEM, laser confocal microscope, contact angle measuring instrument were used to represent the morphology and wetting characteristics. FTIR and EDS were used to detect the surface chemical composition. The result shows that the contact angle of the sample can reach 161.88 °, and the rolling angle is only 3 °, perform extremely low adhesion, more stable than the direct deposition structure on the plane, and also can maintain longer superhydrophobic properties under external force. This method can realize the controllability of the regular structure size and has a wide range of applications.
参考文献/References:
[1] Liu Y, Li G. A new method for producing “Lotus Effect” on a biomimetic shark skin[J]. Journal of Colloid and Interface Science, 2012, 388(1): 235-242.
[2] Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293.
[3] Bhushan B, Her E K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir, 2010, 26(11): 8207-8217.
[4] 高雪峰, 江雷. 天然超疏水生物表面研究的新进展[J]. 物理, 2006, 7: 559-564.
Gao X F, Jiang L. New progress in the study of natural superhydrophobic biological surfaces[J]. Physics, 2006, 7: 559-564(in Chinese).
[5] Gao H, Wang X, Yao H, et al. Mechanics of hierarchical adhesion structures of geckos[J]. Mechanics of Materials, 2005, 37(2-3): 275-285.
[6] Zhao L, Liu Q, Gao R, et al. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance[J]. Corrosion Science, 2014, 80: 177-183.
[7] 卢茜, 胡英成. 层层自组装SiO2/木材复合材料的超疏水性及其形成机制[J]. 功能材料, 2016, 47(7): 7109-7113.
Lu Q, Hu Y C. Superhydrophobicity of layer-by-layer self-assembled SiO2/wood composites and its formation mechanism [J]. Functional Materials, 2016, 47(7): 7109-7113(in Chinese).
[8] Liu Y, Li X, Jin J, et al. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model[J]. Applied Surface Science, 2017, 400: 498-505.
[9] Wang B, Wang X, Zheng H, et al. Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation[J]. Nanomaterials, 2015, 5(3): 1442-1453.
[10] 丰少伟, 张晓东, 陈宇, 等. 电沉积法制备低碳钢超疏水表面及其耐蚀性能[J]. 材料保护, 2019, 52(5): 68-72.
Feng S W, Zhang X D, Chen Y, et al. Preparation of superhydrophobic surface of low carbon steel by electrodeposition method and its corrosion resistance[J]. Materials Protection, 2019, 52(5): 68-72(in Chinese).
[11] Chen Z, Hao L, Chen C. A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 401: 1-7.
[12] 赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
Zhao T T, Kang Z X, Ma X Y. Preparation of superhydrophobic Cu mesh by one-step electrodeposition method and its resistance to corrosion and oil-water separation[J]. Acta Metall Sin, 2018, 54(1): 109-117(in Chinese).
[13] 程杰, 于兆勤, 刘江文, 等. 磁粉电火花毛化制备铝基超疏水表面[J]. 机电工程技术, 2017, 46(9): 31-35.
Cheng J, Yu Z Q, Liu J W, et al. Preparation of aluminum-based superhydrophobic surface by magnetic powder electric spark texturing[J]. Mechatronic Engineering Technology, 2017, 46(9): 31-35(in Chinese).
[14] Feng L, Li H, Song Y, et al. Formation process of a strong water-repellent alumina surface by the sol-gel method[J]. Applied Surface Science, 2010, 256(10): 3191-3196.
[15] Wang J, Li D, Gao R, et al. Construction of superhydrophobic hydromagnesite films on the Mg alloy[J]. Materials Chemistry and Physics, 2011, 129(1-2): 154-160.
[16] Liu W, Sun L, Luo Y, et al. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating[J]. Applied Surface Science, 2013, 280: 193-200.
[17] Boinovich L B, Modin E B, Sayfutdinova A R, et al. Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties[J]. ACS Nano, 2017, 11(10): 10113-10123.
[18] 弯艳玲, 廉中旭, 娄俊, 等. 超疏水铝合金表面的制备及耦合机理分析[J]. 中国表面工程, 2014, 27(4): 112-116.
Wan Y L, Lian Z X, Lou J, et al. Preparation and coupling mechanism analysis of superhydrophobic aluminum alloy surface [J]. China Surface Engineering, 2014, 27 (4): 112-116(in Chinese).
[19] 马国佳, 郑海坤, 常士楠, 等. 微纳结构超疏水表面的浸润性分析及设计[J]. 化学学报, 2019, 77(3): 269-277.
[20] Ma G J, Zheng H K, Chang S N, et al. Wetting analysis and design of micro and nano-structured superhydrophobic surface [J]. Acta Chimica Sinica. 2019, 77(3): 269-277(in Chinese).
[21] Wang H, Chi G, Wang Y, et al. Fabrication of superhydrophobic metallic surface on the electrical discharge machining basement[J]. Applied Surface Science, 2019, 478: 110-118.
[22] Pagotto S O, Alvarenga F C M, Ballester M. Zn-Ni alloy deposits obtained by continuous and pulsed electrodeposition processes[J]. Surface and Coatings Technology, 1999, 122(1): 10-13.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(7):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(7):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(7):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(7):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(7):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(7):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[7]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(7):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[8]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(7):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[9]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(7):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
[10]孟香茗,宋振兴*,卜路霞,等.电沉积法制备纳米线阵列的研究进展[J].电镀与精饰,2021,(6):35.[doi:10.3969/j.issn.1001-3849.2021.06.008]
MENG Xiangming,SONG Zhenxing*,BU Luxia,et al.Research Progress of Producing Nanowire Arrays by Electrodeposition[J].Plating & Finishing,2021,(7):35.[doi:10.3969/j.issn.1001-3849.2021.06.008]
备注/Memo
收稿日期: 2019-12-31;修回日期: 2020-03-01
通信作者: 于兆勤,zqyu@gdut.edu.cn
基金项目: 广东省自然科学基金(2017A030313330)