Fei Qiang * Jin Biao Zhang Tong Yan Lijing Zhang Heli.Anodic oxidation and corrosion resistance of aluminum alloy heat sink for lithium battery[J].Plating & Finishing,2023,(9):6-14.[doi:10.3969/j.issn.1001-3849.2023.09.002]
锂电池铝合金散热片阳极氧化及耐蚀性研究
- Title:
- Anodic oxidation and corrosion resistance of aluminum alloy heat sink for lithium battery
- 关键词:
- 6063 铝合金; 锂电池散热片; 阳极氧化膜; TiO 2 纳米颗粒; 耐蚀性
- Keywords:
- 6063 aluminium alloy ; heat sink for lithium battery ; anodized film ; TiO 2 nanoparticle ; corrosion resistance
- 分类号:
- TQ153.6
- 文献标志码:
- A
- 摘要:
- 6063 铝合金板材分别浸在硫酸电解液、硫酸与柠檬酸混合电解液以及含 TiO 2 纳米颗粒的混合酸电解液中进行阳极氧化,制备不同类型阳极氧化膜,测试并分析了不同阳极氧化膜的微观形貌、成分、物相、厚度和耐蚀性。结果表明:在混合酸电解液中添加 2.5 g/L TiO 2 纳米颗粒,获得的复合阳极氧化膜表面均匀性和致密性最好, TiO 2 颗粒含量和厚度分别达到 3.23% 、 16.7 μ m 。 该复合阳极氧化膜具有最高的电荷转移电阻 6943 Ω ·cm 2 和低频阻抗模值 7618 Ω ·cm 2 ,表现出优异的耐蚀性。在添加 2.5 g/L TiO 2 纳米颗粒的混合酸电解液中阳极氧化后锂电池铝合金散热片的外观呈银白色,经过 120 h 盐雾实验后整体腐蚀程度最轻,归因于复合阳极氧化膜对锂电池铝合金散热片表面防护作用优于常规阳极氧化膜和混合酸阳极氧化膜。
- Abstract:
- : 6063 aluminum alloy plate was anodized in sulfuric acid electrolyte , sulfuric acid and citric acid mixed electrolyte and the mixed acid electrolyte containing TiO 2 nanoparticles to prepare different type of anodized films , and the microstructure , composition , phase , thickness and corrosion resistance of different anodized films were tested and analyzed. The results showed that the composite anodized film obtained from the mixed acid electrolyte containing 2.5 g/L TiO 2 nanoparticles has the best surface uniformity and densification , the content of TiO 2 particles and the thickness reaches 3.23% and 16.7 μ m , respectively. The composite anodized film has the highest charge transfer resistance of 6943 Ω ·cm 2 and low-frequency impedance modulus of 7618 Ω ·cm 2 , showing excellent corrosion resistance. After being anodized in the mixed acid electrolyte containing 2.5 g/L TiO 2 nanoparticles , the aluminum alloy heat sink for lithium battery possesses silver-white appearance , and the overall corrosion degree is the lightest after 120 h salt spray test , which is attributed to the surface protection of the composite anodized film on aluminum alloy heat sink for lithium battery is better than conventional anodized film and mixed acid anodized film.
参考文献/References:
[1] 王鑫 , 韩文轩 , 陆奕丞 , 等 . 整片单管式散热翅片冷却器效率降低的原因分析及处理 [J]. 电工技术 , 2022, 20: 100-102.
[2] 王玉强 . 整体式散热片加工基础研究及装备设计 [D]. 广州 : 广东工业大学 , 2011.
[3] 姬虹 . 热处理工艺对电动汽车轮毂电机散热翅片耐蚀性能的影响 [J]. 热加工工艺 , 2018, 47(8): 223-229.
[4] 石娇 . 铝合金表面 " 三防 " 涂层的制备及机理研究 [D]. 沈阳 : 沈阳工业大学 , 2011.
[5] 李康聪 , 倪展鹏 , 陈思安 , 等 . 铝合金表面亲水膜的制备及性能研究 [J]. 材料保护 , 2022, 55(12): 112-117.
[6] 苏奥 , 王磊 , 陈慧 . 铝锂合金混合酸阳极氧化及无铬封闭研究 [J]. 电镀与精饰 , 2022, 44(1): 22-28.
[7] Lu J Q, Wei G Y, Yu Y D, et al. Aluminum alloy AA2024 anodized from the mixed acid system with enhanced mechanical properties[J]. Surfaces and Interfaces, 2018, 13: 46-50.
[8] Ma S J, Luo P, Zhou H H, et al. Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 825-830.
[9] 陈岁元 , 李海雄 , 杨弥珺 , 等 . 纳米 SiC 增强铝合金表面阳极氧化膜的组织与性能 [J]. 东北大学学报 : 自然科学版 , 2011, 32(7): 952-955.
[10] 崔琳琳 , 庄向仕 , 陈雅兵 . 电流密度对建筑用 6463 铝合金柠檬酸阳极氧化膜性能的影响 [J]. 电镀与精饰 , 2021, 43(8): 1-5.
[11] Cabral-Miramontes J, Almeraya-Calderón F, López F E, et al. Citric acid as an alternative to sulfuric acid for the hard-anodizing of AA6061[J]. Metals, 2021, 11(11): 1838-1850.
[12] 李小庆 , 唐楷 , 林东 . 2024 铝合金硫酸 - 柠檬酸阳极氧化及膜层组织性能研究 [J]. 轻合金加工技术 , 2021, 49(9): 46-51.
[13] 孔德军 , 王进春 , 刘浩 . 7475 铝合金阳极氧化膜表面 - 界面组织与特征 [J]. 中国有色金属学报 , 2014, 24(7): 1744-1751.
[14] 赵光练 , 文璞山 . 电连接器用 ZL101A 铝合金混合酸阳极氧化及氧化膜的耐蚀性 [J]. 电镀与精饰 , 2021, 43(10): 31-35.
[15] Shakiba S, Khabbazi N S, Tabrizi A T, et al. Enhancing the electroplated chromium coating for corrosion protection of aluminum by adding graphene oxide[J]. Surface Engineering and Applied Electrochemistry, 2022, 58: 202-209.
[16] 徐爱民 , 何卫 , 马恒 , 等 . 铝合金表面磷化预处理对水性环氧清漆涂层防护性能的影响 [J]. 材料保护 , 2022, 55(2): 42-47.
[17] Qiao G Q, Wang S C, Wang X H, et al. Ni/Co/black phosphorus nanocomposites for Q235 carbon steel corrosion-resistant coating[J]. Advanced Composites and Hybrid Materials, 2022, 5: 438-449.
[18] 周清欢 , 宓保森 , 蔡锦钊 , 等 . 316L 不锈钢双极板磁控溅射不同厚度石墨涂层的耐蚀性和导电性 [J]. 材料保护 , 2022, 55(4): 1-6.
[19] Sobolev A, Bograchev D, Zinigrad M, et al. Evolution of corrosion on microstructure of ceramic coating produced by plasma electrolytic oxidation in molten salt[J]. Ceramics International, 2022, 48(8): 10990-10998.
[20] Kong W C, Li K M, Hu J. Immersion corrosion behavior, electrochemical performance and corrosion mechanism of subsonic flame sprayed FeCoCrMoSi amorphous coating in 3.5% NaCl solution[J]. International Journal of Hydrogen Energy, 2022, 47(10): 6911-6923.
[21] 刘佳 . 3005 铝合金在有机 - 无机混合酸体系中阳极氧化工艺及其性能探究 [D]. 长沙 : 湖南大学 , 2015.
[22] 冀浩非 , 刘慧玲 . 滚轮用 7A05 铝合金混合酸硬质阳极氧化及性能研究 [J]. 电镀与精饰 , 2022, 44(9): 86-92.
[23] 朱彭舟 , 麻彦龙 , 蒋璐瑶 , 等 . 电解液成分对 7075 铝合金酒石酸 - 硫酸阳极氧化膜结构及性能的影响 [J]. 重庆理工大学学报 ( 自然科学 ), 2020, 34(1): 148-155.
相似文献/References:
[1]刘 阳*,宋晓吉,刘卓群.建筑铝材在不同电解液体系中阳极氧化及氧化膜性能比较[J].电镀与精饰,2024,(6):17.[doi:10.3969/j.issn.1001-3849.2024.06.003]
Liu Yang*,Song Xiaoji,Liu Zhuoqun.Anodic oxidation of construction aluminum in different electrolyte systems and performance comparison of oxide films[J].Plating & Finishing,2024,(9):17.[doi:10.3969/j.issn.1001-3849.2024.06.003]
备注/Memo
收稿日期: 2023-03-21 修回日期: 2023-06-07 * 通信作者: 费强( 1989 —),硕士,讲师,研究方向:电池散热材料、腐蚀与防护技术等, email : KNCX_0839@126.com 基金项目: 2022 年广东省普通高校青年创新人才类项目( 2022KQNCX117 )、东莞市社会发展科技重点项目( 20231800935832 )