Song Jian,Wan Chuanyun*,Shen Xun.Failure mechanism analysis and solutions of solderable tin coating[J].Plating & Finishing,2023,(11):68-73.[doi:10.3969/j.issn.1001-3849.2023.11.010]
可焊性锡镀层失效机理分析与对策
- Title:
- Failure mechanism analysis and solutions of solderable tin coating
- Keywords:
- tin coating ; whisker growth ; solderability ; failure mechanism
- 分类号:
- TQ153.11
- 文献标志码:
- A
- 摘要:
- 锡具有良好的延展性、导电性、焊接性,常作为可焊性镀层广泛用于电子焊接行业。在应用过程中,镀层的变色、晶须生长及焊接性能的下降逐步成为人们关注并需要及时解决的技术问题。简要分析了可焊性锡镀层性能失效机理,从电镀工序角度对提高镀层性能稳定的解决策略进行了梳理,并对镀锡层的质量控制技术方向进行了展望。
- Abstract:
- : Owing to its good ductility , conductivity and solderability , tin coating is widely used in electronic welding industry as a solderable coating. In practical application , the discoloration of tin coating , whisker growth and solderability reduction have become technical problems that need to be paid attention and to be solved. The failure mechanism of solderable tin coating is briefly analyzed , and the strategy to improve the stability of tin coating is given from the perspective of electroplating process. The development trend of control technology for tin coating quality is prospected.
参考文献/References:
[1] Huang C M, Nunez D, Coburn J, et al. Risk of tin whiskers in the nuclear industry[J]. Microelectronics Reliability, 2018, 81: 22-30.
[2] 王先锋 , 贺岩峰 . 锡须生长机理的研究进展 [J]. 电镀与涂饰 , 2005(8): 49-51.
[3] 贺岩峰 , 孙江燕 , 张丹 . 无铅纯锡电镀中的若干问题 [J]. 电子工艺技术 , 2007(1): 20-23, 27.
[4] 李立清 , 杨丽钦 . 锡镀层变色原因初探 [J]. 腐蚀与防护 , 2007(11): 593-594.
[5] Peach Milton O. Mechanism of growth of whiskers on cadmium[J]. Journal of Applied Physics, 1952, 23(12): 1401-1403.
[6] Eshelby J D. A tentative theory of metallic whisker growth[J]. Physical Review, 1953, 91(3): 755-756.
[7] Ellis W C, Gibbons D F, Treuning R C. Growth of metal whiskers from the solid, growth and perfection of crystals[M]. New York: John Wiley & Sons, 1958: 102-120.
[8] Vianco P, Rejent J. Dynamic recrystallization (DRX) as the mechanism for Sn whisker development. Part I: A model[J]. Journal of Electronic Materials, 2009, 38 (9): 1815-1825.
[9] Xian A P, Liu M. Observations of continuous tin whisker growth in NdSn 3 intermetallic compound[J]. Journal of Materials Research, 2009, 24(9): 2775-2783.
[10] Liu M, Xian A P. Spontaneous growth of whiskers on RE-bearing intermetallic compounds of Sn-RE, In-RE, and Pb-RE[J]. Journal of Alloys and Compounds, 2009, 486(1-2): 590-596.
[11] Tu K N. Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions[J]. Physical review B, 1994, 49(3): 2030.
[12] Lau J H, Pan S H. 3D nonlinear stress analysis of tin whisker initiation on lead-free components[J]. Journal of Electronic Packaging: Transactions of the ASME, 2003, 125(4): 621-624.
[13] Barsoum M W, Hoffman E N, Doherty R D, et al. Driving force and mechanism for spontaneous metal whisker formation[J]. Physical Review Letters, 2004, 93(20): 206104.
[14] Dudek M A, Chawla N. Mechanisms for Sn whisker growth in rare earth-containing Pb-free solders[J]. Acta Materialia, 2009, 57(15): 4588-4599.
[15] Galyon G. Whisker formation concepts-the end game[J].Transactions on Components, 2011, 1(7): 1098-1109.
[16] Smetana J. Theory of tin whisker growth: "the end game"[J]. Transactions on Electronics Packaging Manufacturing, 2007, 30(1): 11-22.
[17] Boettinger W J, Johnson C E, Bendersky L A, et al. Whisker and hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits[J]. Acta Materialia, 2005, 53(19): 5033-5050.
[18] Jadhav N, Buchovecky E, Chason E, et al. Real-time SEM/FIB studies of whisker growth and surface modification[J]. Packaging and Manufacturing Technology, 2010, 62 (7): 30-37.
[19] Galyon G T, Palmer L. An integrated theory of whisker formation: The physical metallurgy of whisker formation and the role of internal stresses[J]. Transactions on Electronics Packaging Manufacturing, 2005, 28(1): 17-30.
[20] Lee B Z, Lee D N. Spontaneous growth mechanism of tin whiskers[J]. Acta Materialia, 1998, 46(10): 3701-3714.
[21] 施文洁 , 陈燕秀 , 黄仿元 , 等 . 锡后处理对锡晶须生长的影响 [J]. 铸造技术 , 2015, 36(1): 128-130.
[22] Fisher R M, Darken L S, Carroll K G. Accelerated growth of tin whiskers[J]. Acta Metallurgica, 1954, 2(3): 368-373.
[23] Fujiwara K, Ohtani M, Isu T, et al. Interfacial reaction in bimetallic Sn/Cu thin films[J]. Thin Solid Films, 1980, 70(1): 153-161.
[24] 王先锋 , 贺岩峰 . 抑制锡须的方法 [J]. 电镀与涂饰 , 2007(6):30-32.
[25] 孙红旗 , 孙江燕 , 贺岩峰 . 高速纯锡镀层回流焊变色原因和控制对策 [J]. 电镀与涂饰 , 2016, 35(15): 808-811.
[26] 董昌林 . 电子连接器表面锡层高温焊接变色原因分析 [J] . 电镀与涂饰 , 2017, 36(13): 696-700.
[27] 谢康 , 潘廷龙 , 石蔚春 . 谈影响半导体器件引线可焊性的因素 [J]. 海峡科技与产业 , 2018(4): 96-97, 100.
[28] 肖鑫 . 锡镀层变色的原因分析及解决 [J]. 电镀与涂饰 , 2002(4): 56-58.
[29] 方国富 . 镀锡可焊性研究 [J]. 世界有色金属 , 2020(20): 31-32.
[30] Liu S H, Chen C, Liu P C, et al. Tin whisker growth driven by electrical currents[J]. Journal of Applied Physics, 2004, 95(12): 7742-7747.
[31] Fukuda Y, Osterman M, Pecht M. The impact of electrical current, mechanical bending, and thermal annealing on tin whisker growth[J]. Microelectronics Reliability, 2007, 47(1): 88-92.
[32] 孟跃辉 , 林乐耘 , 崔大为 , 等 . 脉冲参数对可焊性镀锡层性能的影响 [C]// 中国材料研究学会青年委员会 . 第十届全国青年材料科学技术研讨会论文集 (C 辑 ), 科学出版社 , 2005: 333-336.
[33] Chason E, Jadhav N, Pei F, et al. Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms[J]. Progress in Surface Science, 2013, 88(2): 103-131.
[34] Toben M. Tin whiskers in electrodeposits: An overview of the mechanisms that drive their growth[C]//Proceedings of AESF Annual Technical Conference. American Electroplaters & Surface Finishers Soc Inc, 2001.
[35] 高箐遥 , 王守绪 , 陈苑明 , 等 . 硫酸盐光亮镀锡添加剂的研究 [J]. 电镀与环保 , 2019, 39(4): 20-23.
[36] Walsh F C, Low C T J. A review of developments in the electrodeposition of tin[J]. Surface and Coatings Technology, 2016, 288: 79-94.
[37] 黄草明 . 光亮剂对印制电路板低温硫酸盐化学镀锡的影响 [J]. 材料保护 , 2017, 50(12): 59-62.
[38] Dimitrovska A, Kovacevic R. Mitigation of Sn whisker growth by composite Ni/Sn plating[J]. Journal of Electronic Materials, 2009, 38(12): 2516-2524.
[39] Horvath B, Illes B, Harsanyi G. Investigation of tin whisker growth: The effects of Ni and Ag underplates[C]//International Spring Seminar on Electronics Technology, IEEE, 2009: 1-5.
[40] Panashchenko L, Osterman M. Examination of nickel underlayer as a tin whisker mitigator[C]//Electronic Components and Technology Conference, IEEE, 2009: 1037-1043.
[41] Xu C, Zhang Y, Fan C, et al. Driving force for the formation of Sn whiskers: compressive stress-pathways for its generation and remedies for its elimination and minimization[J]. Transactions on Electronics Packaging Manufacturing, 2005, 28(01): 31-35.
[42] 高官荣 , 侯海昌 , 龙安 . 电子电镀中电镀纯锡层相关质量问题探究 [J]. 机电元件 , 2022, 42(5): 32-37.
[43] Yen Y W, Liou W, Jao C. Investigation of interfacial reactions and Sn whisker formation in the matte Sn layer with NiP/Ni/Cu and Ni/Cu multilayer systems[J]. Transactions on Components, 2011, 1(6): 951-956.
[44] Lin Y W, Lai Y S, Lin Y L, et al. Tin whisker growth induced by high electron current density[J]. Journal of Electronic Materials, 2008, 37(1): 17-22.
[45] Brusse J, Ewell G, Siplon J. Tin whiskers: Attributes and mitigation[J]. Carts Europe, 2002, 16: 67-80.
[46] 李芳 , 李才巨 , 彭巨擘 , 等 . 锡锌系无铅钎料合金化研究进展 [J]. 材料导报 , 2022, 36(13):195-204.
[47] 王庆良 . 稀土在材料表面处理技术中的应用 [J]. 表面技术 , 1995(5): 5-8, 49.
[48] Bui Q V, Nam N D, Noh B I, et al. Effect of Ag addition on the corrosion properties of Sn-based solder alloys[J]. Materials and Corrosion, 2010, 61(1): 30-33.
[49] 史建卫 . 无铅化 PCB 表面材料及工艺特点 [J]. 电子工艺技术 , 2011, 32(5): 306-313.
[50] Pietrzak K, Grobelny M, Makowska K, et al. Structural aspects of the behavior of lead-free solder in the corrosive solution[J]. Journal of Materials Engineering and Performance, 2012, 21(5): 648-654.
[51] Wang M, Wang J, Ke W. Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder joints[J]. Microelectronics Reliability, 2017, 73: 69-75.
[52] Tu X, Yi D, Wu J, et al. Influence of Ce addition on Sn-3.0Ag-0.5Cu solder joints: Thermal behavior, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2017, 698: 317-328.
[53] Liao B, Cen H, Chen Z, et al. Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers[J]. Corrosion Science, 2018, 143: 347-361.
[54] Zumelzu E, Cabezas C. Observations on the influence of microstructure on electrolytic tinplate corrosion[J]. Materials Characterization,1995, 34(2): 143-148.
[55] 黄久贵 , 李宁 , 蒋丽敏 , 等 . 软熔条件对镀锡板合金层组织及其耐蚀性的影响 [J]. 上海金属 , 2004(3): 19-22.
[56] Van Haastrecht G C, Miedema J, Hoogovens Groep B V. A mathematical model of the reflow process during tinplating[C]//Fifth International Tinplate Conference. The International Tin Research Institute. London. 1992, 10: 99.
[57] Galyon G T. Annotated tin whisker bibliography and anthology[J]. Transactions on Electronics Packaging Manufacturing, 2005, 28(1): 94-122.
[58] Kim K S, Kim J H, Han S W. The effect of postbake treatment on whisker growth under high temperature and humidity conditions on tin-plated Cu substrates[J]. Materials Letters, 2008, 62(12-13): 1867-1870.
[59] 查全性 . 金属钝化理论的进展 [J]. 化学通报 , 1963(11): 15-19, 5.
[60] Rehim S, Hassan H H, Mohamed N F. Anodic behavior of tin in maleic acid solution and the effect of some inorganic inhibi tors[J]. Corrosion Science, 2004, 46(5): 1071-1082.
[61] 刘仁辉 , 刘斌斌 , 喻玺 , 等 . 黄铜表面植酸钝化膜耐蚀性及其成膜机理 [J]. 表面技术 , 2017, 46(9):197-202.
[62] Carano M. Glicoat SMD organic solderability preservatives[J]. Technical Bulletin Glicoat SMD F2 and F2LX, 2004, 20: 1-4.
[63] Pas F V D. New highest reliable generation of PWB surface finishes for lead-free soldering and future applications[C]//European Institute of Printed Circuits, Stockholm, June, 2005.
[64] Mansfeld F, Kenkel J V. Electrochemical measurements of time-of-wetness and atmospheric corrosion rates[J]. Corrosion, 1977, 33(1): 13-16.
[65] 樊阳文 , 尹东海 , 闫明 , 等 . 腐蚀性气体对金属镀层的影响 [J]. 装备制造技术 , 2018(7): 97-99.
备注/Memo
收稿日期: 2023-03-07 修回日期: 2023-04-03 作者简介: 宋键( 1998 —),男,硕士研究生, email : 15618275158@163.com * 通信作者: 万传云, email : cywan@sit.edu.cn?/html>