Zheng Zifang *,Wang Ziyi,i Qiang.Research on surface modification and wear resistance of aluminum bronze for architectural decoration[J].Plating & Finishing,2024,(5):50-57.[doi:10.3969/j.issn.1001-3849.2024.05.007]
建筑装饰用铝青铜表面改性与耐磨性能研究
- Title:
- Research on surface modification and wear resistance of aluminum bronze for architectural decoration
- Keywords:
- aluminum bronze ; surface modification layer ; nitriding ; microscopic morphology
- 分类号:
- TU512
- 文献标志码:
- A
- 摘要:
-
为了提升装饰用铝青铜合金的表面耐磨性,采用非平衡磁控溅射和等离子渗氮相结合的方法,在铝青铜合金表面制备了不同成分和膜厚的改性膜层,对比分析了改性膜层的显微形貌、物相组成和耐磨性能。结果表明:装饰用铝青铜合金表面磁控溅射 Cu-Ti 膜的 Ti/Cu 原子比接近 6.7 ( M1 )、 1.7 ( M2 )和 0.5 ( M3 ),预置膜厚分别为 3.4 ?m 、 3.4 ?m 和 2.8 ?m 。 660 ℃/2 h 渗氮处理后, M1 、 M2 和 M3 膜层的截面厚度分别为 7.2 ?m 、 5.8 ?m 和 2.7 ?m ,磨损率分别为 0.21 m 3 ·N -1 ·m -1 、 6.27 m 3 ·N -1 ·m -1 和 9.98×10 -14 m 3 ·N -1 ·m -1 ; 660 ℃/5 h 渗氮处理后, M1 、 M2 和 M3 膜层的截面厚度未见明显变化,磨损率分别为 0.47 m 3 ·N -1 ·m -1 、 0.22 m 3 ·N -1 ·m -1 和 3.94×10 -14 m 3 ·N -1 ·m -1 。 660 ℃/2 h 和 660 ℃/5 h 渗氮处理后,膜层的磨损率较铜合金基体明显降低。 660 ℃/2 h 渗氮处理后, M1 膜层的磨损率最小( 0.21×10 -14 m 3 ·N -1 ·m -1 ),耐磨性最好,此时的磨损机制为氧化磨损加黏着磨损。
- Abstract:
-
In order to improve the surface wear resistance of aluminum bronze alloy for decoration , a combination of unbalanced magnetron sputtering and plasma nitriding was used to prepare modified film layers with different compositions and film thicknesses on the surface of aluminum bronze alloy. The microstructure , phase composition and wear resistance of the modified film layers were compared and analyzed. The results showed that the Ti/Cu atomic ratio of the Cu-Ti film sputtered on the surface of aluminum bronze alloy for decoration was close to 6.7 ( M1 ), 1.7 ( M2 ), and 0.5 ( M3 ), with preset film thicknesses of 3.4 ?m , 3.4 ?m , and 2.8 ?m , respectively. The cross-sectional thicknesses of M1 , M2 , and M3 film layers after nitriding treatment at 660 ℃/2 h were 7.2 ?m , 5.8 ?m , and 2.7 ?m , with wear rates of 0.21 m3·N-1·m-1, 6.27 m3·N-1·m-1 and 9.98×10-14 m3·N-1·m-1, respectively. After nitriding treatment at 660 ℃/5 h, there was no significant change in the cross-sectional thickness of M1, M2, and M3 film layers, and the wear rates were 0.47 m3·N-1·m-1, 0.22 m3·N-1·m-1 and 3.94×10-14 m3·N-1·m-1, respectively. The wear rate of the film layer after 660 ℃/2 h and 660 ℃/5 h nitriding treatment is significantly reduced compared to the copper alloy matrix. The wear rate of the M1 film layer after 660 ℃/2 h nitriding treatment is smallest with the best wear resistance, and the wear mechanism is oxidation wear and adhesive wear.
参考文献/References:
[1] 张慧洁 , 侯瑶 , 吴克凡 . 建筑装饰用铜合金的表面钝化工艺与性能研究 [J]. 真空科学与技术学报 , 2021, 41(6): 539-545.
[2] 高铭余 , 谢宏斌 , 方攸同 , 等 . 铜及铜合金表面处理技术进展 [J]. 中国有色金属学报 , 2021, 31(5): 1121-1133.
[3] 吕绪明 , 何荧 , 江涛 , 等 . 纯铜表面等离子渗钽层的摩擦磨损性能和耐腐蚀性能 [J]. 表面技术 , 2022, 51(4): 219-226.
[4] 李宪准 , 张好强 , 丁岚 , 等 . 铜基超疏水表面制备方法的研究进展 [J]. 表面技术 , 2023, 52(9): 79-95.
[5] Lin S P, Li D L, Zhou Q Q, et al. Study on corrosion perforation behavior of copper nickel alloy pipe during service in marine environment[J]. Engineering Failure Analysis, 2023, 153: 107628-107645.
[6] 范晓龙 , 杨晶晶 , 李晓莹 . 复材结构铜网表面膜应用研究 [J]. 化工新型材料 , 2022, 50(4): 180-182.
[7] Haneda R, Nishihara H, Aramaki K. Chemical modification of an alkanethiol self‐assembled layer to prevent corrosion of copper[J]. Journal of the Electrochemical Society, 2019, 144(4): 1215-1221.
[8] 许文灿 . 建筑装饰用铜合金表面 Ni-P 化学镀层的制备与性能研究 [J]. 材料保护 , 2022, 55(4): 104-110.
[9] Panova V T, Kovivchak S V. Formation of oxide layers on the surface of copper and its alloys modified by a high-power ion beam[J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019, 13(6): 1098-1102.
[10] 关庆义 , 孟建兵 , 王帅柯 , 等 . 黄铜表面等离子体电解氧化膜层的制备及性能分析 [J]. 材料工程 , 2023, 51(7): 206-214.
[11] 宋娓娓 , 郭魂 , 汪洪峰 . FSSP 制备铜合金改性层耐磨性分析 [J]. 常州工学院学报 , 2019, 32(2): 13-16.
[12] 宗彦 , 付鹤鸣 . 室内装饰用铜合金的表面化学转化及膜层性能 [J]. 材料保护 , 2020, 53(12): 72-77.
[13] Yu H Y, Fang W, Chang R B, et al. Modifying element diffusion pathway by transition layer structure in high-entropy alloy particle reinforced Cu matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2331-2339.
[14] 孔丹 , 罗志强 , 金胜然 . 铜合金的表面化学镀层制备与摩擦学性能研究 [J]. 电镀与精饰 , 2022, 44(8): 23-30.
[15] Song W W, Xu X J, Liu S R, et al. Effect on the wear resistance of copper alloy surface modification layer by FSSP implanting W particles[J]. Materials Transactions, 2019, 60(5): 765-769.
[16] 刘滩 , 肖鹏 , 方华婵 , 等 . 石墨表面改性对铜基摩擦材料组织与性能的影响 [J]. 粉末冶金材料科学与工程 , 2019, 24(2): 195-204.
[17] Paul C, Sellamuthu R. Effect of nickel content on hardness and wear behaviour of surface modified functionally graded Cu-Sn bronze alloy[J]. International Journal of Materials Engineering Innovation, 2016, 7(1): 43-55.
[18] 吕绪明 , 江涛 , 张云汉 , 等 . 纯铜表面 Ta-W 合金层的抗高温氧化及摩擦行为 [J]. 材料导报 , 2022, 36(23): 104-108.
[19] Agafonkina M O, Grafov O Y, Andreeva N P, et al. Modifying copper and copper alloy surface with depocolin and 5-chloro-1,2,3-benzotriazole from a neutral aqueous solution[J]. Russian Journal of Physical Chemistry A, 2021, 95(11): 2295-2303.
[20] 李艳苗 , 肖来荣 , 翟鹏远 , 等 . 铜表面激光熔覆制备 Ni-Cu-Mo 覆层的显微组织及其摩擦磨损性能 [J]. 中国有色金属学报 , 2023, 33(5): 1502-1513.
备注/Memo
收稿日期: 2024-01-10 修回日期: 2024-02-29 作者简介: 郑子方( 1985 —),女,硕士,讲师,研究方向:建筑材料等。 email : summerrecall@163.com 基金项目: 河南省自然科学基金项目( ZX21023305 );河南省科技攻关计划项目( 2102210282 ) ; 2024 年民办普通高等 学校专业建设资助项目(教政法〔 2023 〕 369 号)?/html>