GAO Lei,SUN Zhigang,et al.Corrosion Protection of Copper by Nano Copper Hydroxide-Oleic Acid Composite Coating[J].Plating & Finishing,2020,(4):11-17.[doi:10.3969/j.issn.1001-3849.2020.04.0030]
纳米氢氧化铜-油酸复合结构对铜的防腐蚀研究
- Title:
- Corrosion Protection of Copper by Nano Copper Hydroxide-Oleic Acid Composite Coating
- 文献标志码:
- A
- 摘要:
- 本文采用电化学沉积和氧化法制备了针状氢氧化铜纳米结构,经过高温反应形成了纳米氢氧化铜-油酸复合涂层。采用扫描电镜(SEM)、接触角测试仪(WCA)等检测手段对涂层不同阶段的形貌结构、润湿性进行了分析。采用电化学阻抗谱和极化曲线等方法研究了氢氧化铜和油酸在不同温度下制备涂层的耐腐蚀性能以及机械性能。结果表明,在80 ℃温度下制备的涂层,低频阻抗(Z0.01 Hz)比裸铜提高了4个数量级,并且自腐蚀电流密度下降5个数量级。此外,对涂层进行35次机械破坏试验后,腐蚀电流密度仍然为裸铜的1/5。因此,涂层能对铜起到较好的防腐蚀效果。
- Abstract:
- In this paper, the needle nanostructured copper hydroxide was prepared by electrochemical deposition and oxidation, and the nano-copper hydroxide-oleic acid composite coating was formed after high temperature reaction. The morphology and wettability of the composite coating were studied by scanning electron microscope (SEM) and water contact angle (WCA) tester, respectively. The corrosion resistance and mechanical properties of the composite coatings prepared at different temperatures were investigated by electrochemical impedance spectroscopy (EIS) and polarization curve. The results showed that the low frequency impedance (Z0.01 Hz) of the coating prepared at 80 °C was four orders of magnitude higher than that of bare copper and five orders of magnitude at corrosion current density. In addition, the corrosion current density of coated Cu was still 1/5 of bare Cu after 35 mechanical failure tests. Therefore, the coating has a good corrosion prevention effect on Cu.
参考文献/References:
[1] 姚建国, 宁欣, 苏建修. 电沉积制备铜基复合镀层的研究进展[J]. 电镀与环保, 2014, 34(3):1-3.
[2] 朱建军. 低镍白铜在海洋环境中的应用[J]. 江苏冶金, 2003, 31(6):21-22.
[3] Ouyang Y, Zhao J, Qiu R, et al. Bioinspired superhydrophobic and oil-infused surface: Which is the better choice to prevent marine biofouling?[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559: 297-304.
[4] 谭祖胜. 铜管在船舶海水管系中的腐蚀[J]. 船海工程, 2011, 1:54-56.
[5] 黄璐琼, 武兴伟. 铜镍合金管在舰船海水管系中的应用[J]. 船舶, 2011, 22(1):40-43.
[6] 张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用[J]. 材料开发与应用, 2006, 21(5):43-46.
[7] 赵九夷. 我国海洋耐蚀防污铜合金研究及其应用[J]. 特种铸造及有色合金, 2006, 26(6):390-392.
[8] 王培, 逄昆, 张海峰, 等. 船舶海水管路青铜截止阀腐蚀失效分析[J]. 材料保护, 2018, 51(10):150-153.
[9] 刘成臣, 张洪彬, 赵连红, 等. 印制电路板海洋环境试验与实验室环境试验相关性研究[J]. 装备环境工程, 2018, 15(2):84-88.
[10] 关蒙恩. 铜及铜合金在海洋环境下的腐蚀剥落行为研究[J]. 舰船科学技术, 2016, 8:184-186.
[11] 胡强生, 汤丽飞. 船舶海水管系腐蚀的防护[J]. 中国水运, 2002, 3:37-38.
[12] 何毅, 徐中浩, 陈航宇, 等. 金属材料防腐技术的研究进展[J]. 应用化工, 2013, 42(11):2065-2067.
[13] 雷冰, 胡胜楠, 万文涛, 等. 船用铜质海水冷却设备的牺牲阳极阴极保护[J]. 材料保护, 2016, 49(10):27-30.
[14] 邓付国, 龚兴厚, 罗锋, 等. 有机硅改性环氧树脂防腐蚀涂层的研究进展[J]. 高分子通报, 2017, 4:19-32.
[15] 张宝岭, 陈玉华, 孟凡刚, 等. 管道无机非金属防腐涂层研究现状[J]. 管道技术与设备, 2005, 2:36-38.
[16] 陈书荣, 谢刚. 金属铜电沉积过程中分形研究[J]. 中国有色金属学报, 2002, 4:846-850.
[17] Shi Z, Ouyang Y, Qiu R, et al. Bioinspired superhydrophobic and oil-infused nanostructured surface for Cu corrosion inhibition: A comparison study[J]. Progress in Organic Coatings, 2019, 131: 49-59.
[18] Ouyang Y, Qiu R, Xiao Y, et al. Magnetic fluid based on mussel inspired chemistry as corrosion-resistant coating of NdFeB magnetic material[J]. Chemical Engineering Journal, 2019, 368: 331-339.
[19] Yang J, Zhou Y, Okamoto T, et al. Preparation of oleic acid-capped copper nanoparticles[J]. Chemistry Letters, 2006, 35(10): 1190-1191.
[20] Kanninen P, Johans C, Merta J, et al. Influence of ligand structure on the stability and oxidation of copper nanoparticles[J]. Journal of Colloid and Interface Science, 2008, 318(1): 88-95.
[21] Khanna P K, More P, Jawalkar J, et al. Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature[J]. Journal of Nanoparticle Research, 2009, 11(4): 793-799.
备注/Memo
收稿日期: 2019-08-24;修回日期: 2019-10-25
作者简介: 高磊,男,硕士,研究方向为海洋腐蚀与防护,E-mail:484737873@qq.com