TANG Zhuxing*,YU Meng,ZHANG Qilong.Preparation and Properties of MIL-101 (Fe) Photocatalytic Materials[J].Plating & Finishing,2020,(5):19-24.[doi:10.3969/j.issn.1001-3849.2020.05.0030]
MIL-101(Fe)光催化材料的制备及性能研究
- Title:
- Preparation and Properties of MIL-101 (Fe) Photocatalytic Materials
- 文献标志码:
- A
- 摘要:
- 利用溶剂热法制备了MIL-101(Fe)材料,通过扫描电镜表征了材料的形貌。采用光催化实验,以亚甲基蓝作为指示剂,探究了亚甲基蓝浓度,催化剂用量和时间三个因素对材料的降解率的影响,分析了以MIL-101(Fe)进行光催化降解的最佳条件,并在暗室和紫外光照环境下进行了空白试验和对照实验。结果表明,制备的材料拥有金属介空结构的微观结构和特殊形貌,形成了多级结构。在6 mg/L的亚甲基蓝溶液中,当MIL-101(Fe)用量为1 g/L,降解时间为210 min时,降解率可达最大值92.5%。空白试验和对照实验结果表明,亚甲基蓝溶液的自降解率为7.025%,MIL-101(Fe)对亚甲基蓝的吸附率为34.1%,即MIL-101(Fe)的实际光催化效率为51.375%。该结果表明MIL-101 (Fe)具有较好的光催化性能,其在有机污染物的降解等环境保护方面有着极大的应用潜力。
- Abstract:
- MIL-101(Fe) material was prepared by solvothermal method and its morphology was characterized by scanning electron microscopy. The photocatalytic properties of the materials were tested. The influence of methylene blue concentration, catalyst dosage and time on the degradation rate was studied by using methylene blue as indicator and the optimum conditions of photocatalytic degradation of MIL-101(Fe) were analyzed. Blank experiment and control experiment were carried out in dark room and ultraviolet light. The results show that the prepared materials have the microstructure and special morphology of metal mesostructure, forming a multi-level structure. In 6 mg/L methylene blue solution, when the dosage of MIL-101(Fe) is 1 g/L and the degradation time is 210 min, the maximum degradation rate is 92.5%. The results of blank experiment and control experiment show that the self degradation rate of methylene blue solution is 7.025%, the adsorption rate of MIL-101(Fe) to methylene blue is 34.1%, that is, the actual photocatalytic efficiency of MIL-101(Fe) is 51.375%. This result show that MIL-101 (Fe) has preferable photocatalytic performance and great application potential in environmental protection such as degradation of organic pollutants.
参考文献/References:
[1] Qu L, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3): 1321-1326.
[2] Czaja A U, Trukhan N, Mueller U. Industrial applications of metal-organic frameworks[J]. ChemInform, 2009, 40(29): 1284-1293.
[3] Huang L, Wang H, Chen J, et al. Synthesis morphology control and properties of porous metal-organic coordination polymers[J]. Microporous and Mesoporous Materials, 2003, 58(2): 105-114.
[4] Hare J P, Dennis T J, Kroto H W, et al. The IR spectra of fullerene-60 and -70[J]. Journal of the Chemical Society Chemical Communications, 1991, 61(6): 412-413.
[5] Beldon P J, Fabian L, Stein S R, et al. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry[J]. Angewandte Chemie, 2010, 122(50): 9834-9837.
[6] Taylor-Pashow K M L, Rocca J D, Xie Z, et al. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery[J]. Journal of the American Chemical Society, 2009, 131(40): 14261-14263.
[7] Chalati T, Horcajada P, Gref R, et al. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A[J]. Journal of Materials Chemistry, 2011, 21(7): 2220-2227.
[8] Luan F, Wang G, Ling Y, et al. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode[J]. Nanoscale, 2013, 5(17): 7984-7990.
[9] Centrone A, Yang Y, Speakman S, et al. Growth of metal-organic frameworks on polymer surfaces[J]. Journal of the American Chemical Society, 2010, 132(44): 15687-15691.
[10] 张卫华, 李晓彤, 徐松, 等. 二氧化钛光催化效率影响因素的研究[J]. 吉林化工学院学报, 2009, 26(2):43-49.
Zhang W H, Li X T, Xu S, et al. Study on the influence factors of photocatalysis efficiency of titanium dioxide [J]. Journal of Jilin Institute of Chemical Technology, 2009, 26(2):43-49 (in Chinese).
[11] Sadakiyo M, Yamada T, Kitagawa H. Rational designs for highly proton-conductive metal-organic frameworks[J]. Journal of the American Chemical Society, 2009, 131(29): 9906-9907.
[12] Ruyffelaere F, Nardello V, Schmidt R, et al. Photosensitizing properties and reactivity of aryl azo naphtol dyes towards singlet oxygen.[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2006, 183(1-2): 98-105.
[13] Cernetic N, Wu S D, Joshua A, et al. Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers[J]. Advanced Functional Materials, 2014, 24(22): 3464-3470.
[14] 李玥, 宋育泽, 邵浦华, 等. 三维Ag/TiO2纳米网的制备及其光催化性能研究[J]. 电镀与精饰, 2018, 40(6): 1-5.
Li Y, Song Y Z, Shao P H, et al. Preparation of 3D Ag / TiO2 nanonets and their photocatalytic performance [J]. Plating & Finishing, 2018, 40(6): 1-5 (in Chinese).
[15] Li W, Geng X, Guo Y, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection[J]. ACS Nano, 2011, 5(9): 6955-6961.
[16] 朱世东, 徐自强, 白真权, 等. 纳米材料国内外研究进展Ⅱ[J]. 热处理技术与装备, 2010, 31(4): 1-8.
Zhu S D, Xu Z Q, Bai Z Q, et al. Research progress of nanomaterials at home and abroad Ⅱ[J]. Heat Treatment Technology and Equipment, 2010, 31 (4): 1-8 (in Chinese).
[17] Seger B, Kamat P V. Electrocatalytically active graphene-platinum nanocomposites role of 2-D carbon support in PEM fuel cells[J]. The Journal of Physical Chemistry C, 2009, 113(19): 7990-7995.
[18] Gu Z Y, Chen Y J, Jiang J Q, et al. Metal-organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples[J]. Chemical Communications, 2011, 47(16): 4787-4789.
[19] Osugi M E, Rajeshwar K, Ferraz E R A, et al. Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity[J]. Electrochimica Acta, 2009, 54(7): 2086-2093.
[20] Martini I, Hodak J H, Hartland G V. Dynamics of semiconductor-to-dye electron transfer for anthracene dyes bound to different sized TiO2 particles[J]. The Journal of Physical Chemistry B, 1999, 103(43): 9104-9111.
相似文献/References:
[1]唐祝兴,余 孟.ZnO/石墨烯复合光催化材料的制备及性能研究[J].电镀与精饰,2019,(7):20.[doi:10.3969/j.issn.1001-3849.2019.07.005]
TANG Zhuxing,YU Meng.Preparation and Properties of ZnO / Graphene Composite Photocatalyst[J].Plating & Finishing,2019,(5):20.[doi:10.3969/j.issn.1001-3849.2019.07.005]
备注/Memo
收稿日期: 2019-09-30;修回日期: 2019-11-20
通信作者: 唐祝兴, email: tangzhuxing@163.com
基金项目: 辽宁省教育厅科学研究一般项目(LG201619)