YANG Yuhui,HE Weifeng,CHEN Haibin,et al.Experimental Study on Wear of Carbide-Tipped Tools for Dry Turning Austenitic Stainless Steel[J].Plating & Finishing,2020,(8):22-27.[doi:10.3969/j.issn.1001-3849.2020.08.0050]
干车削奥氏体不锈钢硬质合金刀具磨损实验研究
- Title:
- Experimental Study on Wear of Carbide-Tipped Tools for Dry Turning Austenitic Stainless Steel
- 文献标志码:
- A
- 摘要:
- 针对刀具在车削过程中磨损造成的快速失效问题,采用WC-Co硬质合金刀具进行奥氏体不锈钢干式车削实验,采用切削速度、进给量及背吃刀量为单一变量进行单因素实验,通过超景深三维显微镜观察刀具的磨损形貌,分析WC-Co硬质合金刀具的主要磨损机理及磨损形式。结果表明,WC-Co硬质合金刀具加工奥氏体不锈钢时,进给量、切削速度、背吃刀量对刀具寿命的影响依次减小,进给量越大,刀具磨损、崩刃现象越严重,刀具前刀面的月牙洼磨损随进给量的增加而急剧增大。刀具在磨损过程中依次经过初期轻磨损、中期稳定均匀磨损、后期剧烈快速磨损三个阶段。刀具的磨损机理主要为黏结磨损、氧化磨损、边界磨损。
- Abstract:
- In view of the rapid failure caused by tool wear in the turning process, WC-Co cemented carbide tool was used for turning of austenitic stainless steel under non-liquid cooling conditions. In this paper, the single factor experiment was carried out with the cutting speed, feed rate, and back cutting depth as single variables. The wear morphology of the tool was observed by the ultra-depth field 3D microscope, and the primary wear mechanism and wear form of WC-Co cemented carbide tool were revealed. The results showed that when WC-Co cemented carbide tool was used to process austenitic stainless steel, the influence of feed rate, cutting speed, and back cutting depth on the tool life decreases in turn. The higher the feed rate, the more serious the tool wear and edge collapse. The crescent-depression wear of the rake face has a sharp increase with the increase of feed. In the process of tool wear, there were three stages: light wears in the early stage, stable and uniform wear in the middle stage, and severe and rapid wear in the later stage. The wear mechanism of the tool was mainly bond wear, oxidation wear, and boundary wear.
参考文献/References:
[1] 韩豫, 陈学东, 刘全坤, 等. 奥氏体不锈钢应变强化工艺及性能研究[J]. 机械工程学报, 2012, 48(2): 87-92.
Han Y, Chen X D, Liu Q K, et al. Study on technique and properties of cold stretching for austenitic stainless steels[J]. Journal of Mechanical Engineering, 2012, 48(2): 87-92 (in Chinese).
[2] 张牧, 徐和平, 徐启明, 等. 奥氏体不锈钢钻头用高速钢的选择[J]. 工具技术, 2018, 52(6): 113-114.
Zhang M, Xu H P, Xu Q M, et al. Selection of high speed steel for austenitic stainless steel drills[J]. Tool Engineering, 2018, 52(6): 113-114 (in Chinese).
[3] Shokrani A, Dhokia V, Newman S T. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids[J]. International Journal of Machine Tools & Manufacture, 2012, 57(2): 83-101.
[4] 王庭俊, 周建华. 1Cr18Ni9Ti不锈钢的切削加工[J]. 工具技术, 2009, 43(7): 63-67.
Wang T J, Zhou J H. Cutting process of 1Cr18Ni9Ti stainless steel[J]. Tool Engineering, 2009, 43(7): 63-67 (in Chinese).
[5] 侯世香, 刘献礼, 文东辉, 等. 干式切削技术发展现状[J]. 现代制造工程, 2000, (7): 37-38.
Hou S X, Liu X L, Wen D H, et al. Current development of dry cutting technology[J]. Modern Manufacturing Engineering, 2000, (7): 37-38 (in Chinese).
[6] 朱振国. 涂层刀具切削奥氏体不锈钢的磨损机理研究[D]. 合肥: 合肥工业大学, 2012.
[7] 吴克忠, 陈永洁, 朱丹丹. 干式切削及其刀具技术[J]. 硬质合金, 2005, (1): 49-52.
Wu K Z, Chen Y J, Zhu D D. Dry cutting and its tools technology[J]. Cemented Carbide, 2005, (1): 49-52 (in Chinese).
[8] 金成哲, 贾春德. 正交车铣高强度钢的刀具耐用度及磨损机理研究[J]. 工具技术, 2005, 39(9): 16-18.
Jin C Z, Jia C D. Research on tool life and tool wear mechanics of high strength steel with orthogonal turn-milling[J]. Tool Eengineering, 2005, 39(9): 16-18 (in Chinese).
[9] 李安海, 赵军, 罗汉兵, 等. 高速干铣削钛合金时涂层硬质合金刀具磨损机理研究[J]. 摩擦学学报, 2012, 32(1): 40-46.
Li A H, Zhao J, Luo H B, et al. Wear mechanisms of coated carbide tools in high-speed dry milling of titanium alloy[J]. Tribology, 2012, 32(1):40-46 (in Chinese).
[10] 郑光明, 程祥, 牛宗伟, 等. 涂层硬质合金刀具高速车削300M刀具磨损机理研究[J]. 制造技术与机床, 2017, (10): 98-102.
Zheng G M, Cheng X, Niu Z W, et al. Wear mechanism of a coated carbide tool in high-speed turning of 300M[J]. Manufacturing Technology & Machine Tool, 2017, (10): 98-102 (in Chinese).
[11] 李珍灿. 超高强度钢 40CrNi2Si2MoVA 高速车削机理及仿真研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.
[12] 辛民, 龙震海. 高强度钢干切削加工表面粗糙度几何轮廓特征分析[J]. 制造技术与机床, 2014, (2): 94-96.
Xin M, Long Z H. The characterization of roughness geometry profiles induced by dry cutting process[J]. Manufacturing Technology & Machine Tool, 2014, (2): 94-96 (in Chinese).
[13] 张洪霞. 300M超高强度钢高速车削加工表面质量的研究[D]. 哈尔滨: 哈尔滨理工大学, 2014.
[14] 刘暐, 李晓岩. 高速车铣高强度钢刀具磨损的研究[J]. 新技术新工艺, 2008, (3): 8-9.
Liu W, Li X Y. Study on tool wear of high strength steel for high speed turning milling[J]. New Technology & New Process, 2008, (3): 8-9 (in Chinese).
[15] 方亮, Gee M G, Roebuck B. WC/Co硬质合金显微磨损机理[J]. 中国矿业大学学报, 1999, (28): 1-3.
Fang L, Gee M G, Roebuck B. Micro-scale wear of WC/Co hard metals[J]. Journal of China University of Mining & Technology, 1999, (28): 1-3 (in Chinese).
[16] 江湘颜, 李文元, 汤爱民. 涂层硬质合金刀具车削奥氏体不锈钢的试验研究[J]. 工具技术, 2009, (6): 59-61.
Jiang X Y, Li W Y, Tang A M. Experimental study on coated carbide tool turning austenitic stainless steel[J]. Tool Engineering, 2009, (6): 59-61 (in Chinese).
[17] 冯振兴. 涂层硬质合金刀具切削铁基高温合金试验研究[D]. 大连: 大连理工大学, 2013.
[18] 周建涛. 硬质合金刀具车削半奥氏体沉淀硬化不锈钢的磨损机理研究[D]. 济南: 山东大学, 2010.
备注/Memo
收稿日期: 2020-03-19;修回日期: 2020-06-11
作者简介: 杨宇辉,男,硕士,助理工程师,Email:yangyuhui@dgut.edu.cn
通讯作者: 叶国良,Email:gye@dgut.edu.cn
基金项目: 广东省自然科学基金项目(2017A030313690);广东省普通高校省级重大科研项目(2017KZDXM082)