WANG Jinrong,XU Qiang,LU Zhiqiang,et al.Hydrogen Induced Delayed Fracture of 980 MPa Grade Automotive Steel[J].Plating & Finishing,2021,(1):41-46.[doi:10.3969/j.issn.1001-3849.2021.01.0080]
980 MPa级汽车用钢氢致延迟断裂性能
- Title:
- Hydrogen Induced Delayed Fracture of 980 MPa Grade Automotive Steel
- 文献标志码:
- A
- 摘要:
- 氢致延迟断裂是高强钢比较常见的失效方式,具有突发性、不可预知性以及严重的破坏性。当前,汽车轻量化的快速发展使得高强钢在汽车中的应用越来越广泛,因此,延迟断裂已经成为钢厂、零部件制造商以及汽车主机厂都十分关注的材料性能认证项目之一。本文采用加速断裂实验法对U型弯曲试样在酸性介质中的性能进行了测试,研究了980 MPa级别汽车用钢的氢致延迟断裂性能,对比了DP980和QP980两种钢种氢致延迟断裂性能的差异,分析了不同组织对氢致延迟断裂性能的影响。结果表明,QP980钢种的氢致延迟断裂敏感性要比DP980钢种高很多。相同条件下,QP980样品平均36 h即全部发生了整体断裂,而DP980样品均未出现裂纹或发生断裂。分析原因为QP980高强钢中含有残余奥氏体组织,具有较高的溶氢量,变形过程中,残余奥氏体发生TRIP效应转变成具有较高氢致延迟断裂敏感性的马氏体组织,同时释放出氢增大了可扩散氢的浓度,马氏体组织和氢的共同作用下导致QP980钢具有较高的氢致延迟断裂敏感性。
- Abstract:
- Hydrogen induced delayed fracture is a common failure mode of high-strength steel, which is sudden, unpredictable and severely destructive. At present, the rapid development of automobile lightweighting makes the application of high-strength steel more and more widely in automobiles. Therefore, delayed fracture has become one of the material performance certification projects that steel mills, parts manufacturers and automobile manufacturers are very concerned about. In this paper, the properties of U-shaped bending specimens in acid medium were tested by accelerated fracture test method. The hydrogen induced delayed fracture properties of 980 MPa grade automobile steel were studied. The difference of hydrogen induced delayed fracture properties between DP980 and QP980 steel was compared and the influence of different microstructure on hydrogen induced delayed fracture properties was analyzed. The results show that the sensitivity of QP980 steel to hydrogen induced delayed fracture is much higher than that of DP980 steel. Under the same conditions, all QP980 samples were completely fractured within 36 h, while DP980 samples were not cracked or fractured. The reason is that QP980 high strength steel contains retained austenite structure with high hydrogen solubility. During the deformation process, the residual austenite transforms to the martensite with higher hydrogen induced delayed fracture sensitivity. At the same time, the release of hydrogen increases the concentration of diffusible hydrogen in the steel. The joint action of martensite and hydrogen results in high hydrogen induced delayed fracture sensitivity of QP980 steel.
参考文献/References:
[1] 范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1): 1-16.
Fan Z J, Gui L J, Su R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1): 1-16 (in Chinese).
[2] 王利, 杨雄飞, 陆匠心. 汽车轻量化用高强度钢板的发展[J]. 钢铁, 2006, 41(9): 1-8.
Wang L, Yang X F, Lu J X. Development of high strength steel sheets for lightweight automobile[J]. Iron and Steel, 2006, 41(9): 1-8 (in Chinese).
[3] 康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1-7.
Kang Y L. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008, 43(6): 1-7 (in Chinese).
[4] 黄发, 周庆军. 高强钢的氢致延迟断裂行为研究进展[J]. 宝钢技术, 2015(3): 11-16.
Huang F, Zhou Q J. Progress and perspectives of hydrogen induced delayed fracture of high strength steels[J]. Bao-Steel Technology, 2015(3): 11-16 (in Chinese).
[5] 张永健, 周超, 惠卫军, 等. 碳含量对Mn-B钢氢致延迟断裂行为的影响[J]. 钢铁研究学报, 2014, 26(5): 49-55.
Zhang Y J, Zhou C, Hui W J, et al. Effect of C content on hydrogen induced delayed fracture behavior of Mn-B type steels [J]. Journal of Iron and Steel Research, 2014, 26(5): 49-55 (in Chinese).
[6] Zhang Y J, Zhou C, Hui W J, et al. Hydrogen induced delayed fracture behavior of a low-carbon Mn-B type ultra-high strength steel sheet[J]. Transactions of Materials & Heat Treatment, 2013, 34(10): 96-102.
[7] Zhang S Q, Fan E, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel[J]. Corrosion Science, 2018, 139: 83-96.
[8] Zhao X M, Yang J F, Zhang Y J, et al. Hydrogen induced delayed fracture behavior of cold hardening microalloyed bainitic steel[J]. Journal of Materials Engineering, 2012, 2(3): 47-51.
[9] Lu H Z, Zhang S Q, Jian B, et al. Solutions for hydrogen-induced delayed fracture in hot stamping[J]. Advanced Materials Research, 2014, 1063: 32-36.
[10] Loidl M, Kolk O, Veith S. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft Und Werkstofftechnik, 2011, 42(12): 1105-1110.
[11] Venezuela J, Liu Q, Zhang M, et al. A review of hydrogen embrittlement of martensitic advanced high-strength steels[J]. Corrsion Reviews, 2016, 34(3): 153-186.
[12] Venezuela J, Lim F Y, Liu L, et al. Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel[J]. Corrosion Science, 2020, 171: 108726.
[13] Pradhan A, Vishwakarma M, Dwivedi S K. A review: the impact of hydrogen embrittlement on the fatigue strength of high strength steel[J]. Materials Today: Proceedings, 2020, 26: 3015-3019.
[14] Rudomilova D, Pro?ek T, Luckeneder G. Techniques for investigation of hydrogen embrittlement of advanced high strength steels[J]. Corrosion Reviews, 2018(5): 413-434.
[15] Chen H, Wei L J, Xie Z J, et al. Carbide precipitation and hydrogen embrittlement susceptibility of a 960 MPa grade ultra-high strength steel[J]. Materials Science and Engineering, 2018, 461: 012023.
[16] Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials[J]. International Journal of Hydrogen Energy, 2019, 44(51): 28007-28030.
[17] Shibayama Y, Hojo T, Akiyama E. An evaluation method for hydrogen embrittlement of high strength steel sheets using U-bend specimens[J]. Tetsu to Hagane, 2019, 105(9): 927-934.
[18] 康永林, 邝霜, 尹显东, 等. 汽车用双相钢板的开发与研究进展[J]. 汽车工艺与材料, 2006(5): 1-5.
Kang Y L, Kuang S, Yin X D, et al. Research on progress and development of dual phase steel sheet for automobiles[J]. Automobile Technology & Material. 2006(5): 1-5 (in Chinese).
[19] Malitckii E, Yagodzinskyy Y, Vilaca P. Role of retained austenite in hydrogen trapping and hydrogen-assisted fatigue fracture of high-strength steels[J]. Materials Science and Engineering: A, 2019, 760(8): 68-75.
[20] Lovicu G, Bagliani E P, Desanctis M, et al. Hydrogen embrittlement of a medium carbon Q&P steel[J]. Acta Materialia Inc, 2013, 105(6): 3-10.
备注/Memo
收稿日期:2020-06-12;修回日期:2020-07-13作者简介:王金荣,女,博士,中级工程师,email:wjr1990@126.com通信作者:陈卓,email:zhuochen_1990@163.com