LU Wenting,CHEN Yajun*,LIU Yan,et al.Study on the Removal Process of Oxide Scale on the 17-4PH Aviation Fasteners[J].Plating & Finishing,2021,(1):47-54.[doi:10.3969/j.issn.1001-3849.2021.01.0090]
17-4PH航空紧固件表面氧化皮去除工艺研究
- Title:
- Study on the Removal Process of Oxide Scale on the 17-4PH Aviation Fasteners
- Keywords:
- 17-4PH stainless steel aviation fasteners oxide scale electrolytic pickling ultrasonic cleaning
- 文献标志码:
- A
- 摘要:
- 17-4PH航空紧固件生产工艺中要经过1040 ℃固溶处理及520 ℃时效处理,为了优化热处理中形成的缺陷氧化皮的去除工艺,本文研究了五种电解酸洗与超声清洗协同方式对去除效率的影响规律,并采用扫描电子显微镜、能谱仪以及X射线衍射仪对氧化皮的微观形貌及物相结构进行了表征。结果表明,经过固溶与时效处理后,紧固件表面存在缺陷的氧化皮主要成分为Fe3O4与Fe2O3,呈疏松多孔状;影响氧化皮去除效率的电解酸洗工艺因素依次为电流密度、电解液温度和电解液浓度。五种方式中,超声清洗的氧化皮去除效率最低,超声清洗与电解酸洗交替的去除效率最高。35 ℃下超声清洗与电解酸洗交替较75 ℃的电解酸洗效率更高。
- Abstract:
- The production processes of 17-4PH aviation fasteners needs to go through solid solution heat treatment under 1040 ℃ and ageing treatment under 520 ℃. In order to optimize the removal process of defective oxide scale formed in heat treatment, the effects of five synergistic methods of electrolytic pickling and ultrasonic cleaning on the removal efficiency were studied. The microstructure and phase structure of oxide scale were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The result shows that after solid solution heat treatment and aging treatment, the oxide scale with defects on the surface of fasteners mainly consists of Fe3O4 and Fe2O3, which is loose and porous. The efficiency of oxide scale removal by electrolytic pickling process with different parameters is ranked from high to low: current density, electrolyte temperature, electrolyte concentration. Among the five synergistic methods, the removal efficiency of ultrasonic cleaning is the lowest, and that of alternating ultrasonic cleaning and electrolytic pickling is the highest. The efficiency of alternating ultrasonic cleaning and electrolytic pickling at 35 ℃ is higher than that of pure electrolytic pickling at 75 ℃.
参考文献/References:
[1] 杨晓. 17-4PH不锈钢性能和组织研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
[2] 王振海. 不锈钢的三大新用途[J]. 金属世界, 1994(3): 19-20.
Wang Z H. Three new uses of stainless steel [J]. Metal World, 1994(3): 19-20 (in Chinese).
[3] 李英亮. 紧固件概论[M]. 北京: 国防工业出版社, 2013, 70-74.
[4] 李美栓, 辛丽, 钱余海, 等. 氧化膜应力研究进展[J]. 腐蚀科学与防护技术, 1999, 11(5): 300-305.
Li M S, Xin L, Qian Y H, et al. A review on studies of internal stress in oxide scales[J]. Corrosion Science and Protection Technology, 1999, 11(5): 300-305 (in Chinese).
[5] 何爱花. 热轧钢板氧化膜对基体碳钢腐蚀电化学行为的影响[D]. 青岛: 中国海洋大学, 2007.
[6] Geneve D, Rouxel D, Pigeat P, et al. Descaling ability of low-alloy steel wires depending on composition and rolling process[J]. Corrosion Science, 2010, 52(4): 1155-1166.
[7] Takeda M, Kushida H, Onishi T, et al. Influence of oxidation temperature and Cr content on the adhesion and microstructure of scale on low Cr steels[J]. Oxidation of Metals, 2010, 73(1-2): 1-13.
[8] Chen R Y, Yeun W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen[J]. Oxidation of Metals, 2003, 59(5-6): 433-468.
[9] Chen R Y, Yuen W Y D. Oxidation of low-carbon, low-silicon mild steel at 450-900 ℃ under conditions relevant to hot-strip processing[J]. Oxidation of Metals, 2002, 57(1-2): 53-79.
[10] Schwankl M, Kellner R, Singer R F, et al. The influence of sandblasting on the morphology of electroless deposited zinclayers on aluminum sheets[J]. Applied Surface Science, 2013, 283(20): 202-208.
[11] Martinelli C S M, Cardoso M, Carvalho R F, et al. Co-Cr alloy: Sandblasting and percentage variation in surface roughness[J]. Dental Materials, 2013, 29(Suppl 1): e16.
[12] Bigerelle M, Mathia T, Bouvier S. The multi-scale roughness analyses and modeling of abrasion with the grit size effect on ground surfaces[J]. Wear, 2012, 286-287(11): 124-135.
[13] 张颖, 李慎松. 国外不锈钢酸洗技术[J]. 金属制品, 2012, 38(1): 21-26.
Zhang Y, Li S S. Overseas stainless pickling technology[J]. Metal Products, 2012, 38(1): 21-26 (in Chinese).
[14] 张颖. 国内不锈钢酸洗技术[J]. 金属制品, 2011, 37(5): 37-41.
Zhang Y. Domestic stainless steel pickling technology[J]. Metal Products, 2011, 37(5): 37-41 (in Chinese).
[15] 李勇华, 邵远敬, 贺立红. 热轧奥氏体不锈钢带钢酸洗工艺机理分析[J]. 钢铁, 2014, 49(10): 58-61.
Li Y H, Shao Y J, He L H. Analysis of pickling process mechanism of hot-rolled austenitic stainless steel strip[J]. Iron & Steel, 2014, 49(10): 58-61 (in Chinese).
[16] Sheasby J S, Boggs W E, Turkdogan E T. Scale growth on steels at 1200℃: rationale of rate and morphology[J]. Metal Science, 1984, 18(3): 127-136.
[17] Hardcastle J L, Ball J C, Hong Q, et al. Sonoelectrochemical and sonochemical effects of cavitation: correlation with interfacial cavitation induced by 20 kHz ultrasound[J]. Ultrasonics Sonochemistry, 2000, 7(1): 7-14.
[18] Feng R, Huang J L. Ultrasonic cleaning and ultrasonic physical mechanism[J]. Applied Acoustics, 1994, 13(1): 42-47.
[19] 沈阳. 超声空化的理论研究及影响因素的模拟分析[D]. 沈阳: 东北大学, 2014.
[20] 朱立群, 李敏伟, 王辉. 不锈钢表面高温热处理氧化皮的常温去除机理研究[J]. 材料热处理学报, 2007, 28(4): 116-121.
Zhu L Q, Li M W, Wang H. Study of removing mechanism of oxide films on heat-treated stainless steel at room temperature[J]. Transactions of Materials and Heat Treatment, 2007, 28(4): 116-121 (in Chinese).
[21] 郭志萍. 不同半径掺气泡对空泡动力学特性影响的研究[D]. 杭州: 浙江工业大学, 2012.
备注/Memo
收稿日期: 2020-06-08;修回日期: 2020-07-22
通信作者: 陈亚军, email: yjchen@cauc.edu.cn
基金项目: 国家自然科学