CHENG Jihua*,LIU Mingju,HU Zhenquan.Influence of Pretreatment Process on Chromic Acid Anodizing for Aluminum Alloy[J].Plating & Finishing,2021,(5):36-42.[doi:10.3969/j.issn.1001-3849.2021.05.006]
前处理工艺对铝合金铬酸阳极氧化的影响
- Title:
- Influence of Pretreatment Process on Chromic Acid Anodizing for Aluminum Alloy
- 文献标志码:
- A
- 摘要:
- 针对碱蚀、出光前处理对铝合金基体造成晶间过腐蚀或脱氧效果差,进而导致的铬酸阳极氧化膜层质量差、耐蚀性试验不合格等质量问题进行了分析,采用三酸脱氧前处理工艺,研究了碱蚀、出光、三酸脱氧三种前处理对铝合金基体脱氧效果的影响。结果表明,三酸脱氧中不含碱性成分,不会对铝合金中Fe、Mn等元素的杂质相进行腐蚀,而是通过HF来腐蚀基体表面的氧化物、油脂等,同时CrO3可以有效地抑制HF对基体的腐蚀速率,而加入HNO3的主要作用是处理HF腐蚀过程中所产生的挂灰现象。相比碱蚀和出光,三酸脱氧前处理脱氧效果好,阳极氧化膜层具有膜厚适中、致密度好、耐蚀性强的优点,更有效地保证了铬酸阳极氧化适用于精密零件的生产。
- Abstract:
- In this paper, in view of some quality problems of chromic acid anodizing coating, such as the thin thickness, the poor density and the unqualified corrosion resistance. The effects of three kinds of pretreatment on the deoxidization effect of aluminum alloy matrix were studied by using alkali corrosion, brightening and tri-acid deoxidizing pretreatment process. The results show that there is no basic component in the deoxidization of tri acid, which will not corrode the impurity phase of Fe, Mn and other elements in aluminum alloy, HF is used to corrode oxide and grease on the surface of matrix, meanwhile, CrO3 can effectively inhibit the corrosion rate of HF to the matrix. The main function of adding HNO3 is to deal with the ash hanging in HF corrosion process. Compared with alkali corrosion and brightening, the deoxidization effect of tri-acid deoxidizing pretreatment is the best, and the anodizing coating has the advantages of moderate coating thickness, good density and strong corrosion resistance, which ensures the chromic acid anodizing is suitable for the production of precision parts more effectively.
参考文献/References:
[1] 戴一帆, 沈士泰, 卢洁琴, 等. 2024铝合金混合酸阳极氧化[J]. 表面技术, 2018, 49(1): 198-202.
Dai Y F, Shen S T, Lu J Q, et al. 2024 Aluminum alloy anodic oxidation in mixed acid[J]. Surface Technology, 2018, 49(1):198-202 (in Chinese).
[2] 吴英豪, 赵文杰, 王武荣, 等. 铝合金表面微/纳米结构构筑研究进展[J]. 表面技术, 2017, 46(5): 133-145.
Wu Y H, Zhao W J, Wang W R, et al. Research progress in fabricating micro/nano structures on aluminum alloys surface[J]. Surface Technology, 2017, 46(5): 133-145 (in Chinese).
[3] 刘静安, 谢水生. 铝合金材料应用与开发[M]. 北京: 冶金工业出版社, 2011.
[4] Patermarakis G. Aluminium anodising in low acidity sulphate baths: growth mechanism and nanostructure of porous anodic films[J]. Journal of Solid State Electrochemistry, 2006(10): 211-222.
[5] 吕建琴, 陈代伟. 铝及铝合金铬酸阳极化工艺研究[J]. 涂料涂装与电镀, 2006(6): 31-33.
Lv J Q, Chen D W. Chromate anodizing process study for aluminum and its alloy[J]. Coatings Painting & Electroplating, 2006(6): 31-33(in Chinese).
[6] 周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1-9.
Zhou H R, Li X G, Dong C F. Review of atmospheric corrosion behavior and mechanism of aluminum alloys and its anodic film[J]. Equipment Environmental Engineering, 2006, 3(1): 1-9 (in Chinese).
[7] 郑瑞庭. 铝及其合金铬酸阳极氧化[J]. 电镀与精饰, 2003, 25(1): 13-15.
Zheng R T. Anodizing of aluminum and its alloy in chromic acid solution [J]. Plating and Finishing, 2003, 25(1): 13-15 (in Chinese).
[8] 郑丽, 魏晓伟, 罗松. 铝基体对阳极氧化膜的影响[J]. 表面技术, 2013, 42(1): 39-41.
Zheng L, Wei X W, Luo S. Effect of the aluminum matrix on anodic oxidation film[J]. Surface Technology, 2013, 42(1): 39-41 (in Chinese).
[9] Liu J H, Li M, Li S M, et al. Effect of the microstructure of A1 7050-T745l on anodic oxide formation in sulfuric acid[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 432-438.
[10] 张发余, 高虹, 张爱黎. 铝合金常温硬质阳极氧化研究[J]. 电镀与精饰, 2006, 28(6): 14-17.
Zhang F Y, Gao H, Zhang A L. Study on aluminum alloy room temperature hard anodization[J]. Plating & Finishing, 2006, 28(6): 14-17 (in Chinese).
[11] 李峰, 张建周, 马慧媛, 等. 稀土盐对铝合金硼硫酸阳极氧化膜层性能的影响[J]. 表面技术, 2014, 43(6): 95-99.
Li F, Zhang J Z, Ma H Y, et al. Study on impact of rare earth salts on the properties of aluminum alloy anodic oxidation film prepared in boron sulfuric acid solution[J]. Surface Technology, 2014, 43(6): 95-99 (in Chinese).
[12] 时春燕, 王春霞, 吴光辉, 等. 轧制成形与挤压成形2A12铝合金硬质阳极氧化膜性能对比研究[J]. 表面技术, 2019, 48(3): 178-184.
Shi C Y, Wang C X, Wu G H, et al. Comparative study on properties of 2A12 aluminum alloy hard anodized film by roll forming and extrusion[J]. Surface Technology, 2019, 48(3): 178-184 (in Chinese).
[13] 杨景伟, 赵永岗, 孙杰, 等. 铝合金铬酸阳极氧化后表面缺陷分析[J]. 表面技术, 2014, 43(2): 72-75.
Yang J W, Zhao Y G, Sin J, et al. Defect analysis of the aluminum alloy substrate after chromic acid anodizing [J]. Surface Technology, 2014, 43(2): 72-75 (in Chinese).
[14] 王利华, 罗庆, 杨燕, 等. 高耐蚀性铬酸阳极氧化工艺研究[J]. 腐蚀与防护, 2011, 32(2): 131-133.
Wang L H, Luo Q, Yang Y, et al. High anti-corrosion chromic acid anodizing process[J]. Corrosion & Protection, 2011, 32(2):131-133 (in Chinese).
[15] MIL-A-8625F, Anodic coatings for aluminum and aluminum alloys[S]. Virginia: HIS, 1993.
[16] 杨培霞, 安茂忠. 预处理工艺对制备多孔阳极氧化铝膜的影响[J]. 材料过程, 2005(9): 26-29.
Yang P X, An M Z. Influence of pretreatment on preparation of porous anodic alumina film[J]. Journal of Materials Engineering, 2005(9): 26-29 (in Chinese).
[17] 易俊兰, 吴松林, 刘明辉, 等. 前处理对化学转化处理铝锂合金耐蚀性的影响[J]. 表面技术, 2013, 42(1): 42-45.
Yi J L, Wu S L, Liu M H, et al. Influence of pretreatment on corrosion resistance of chromate conversion coated aluminum-lithium alloy[J]. Surface Technology, 2013, 42(1): 42-45 (in Chinese).
[18] ASTM B 244, Standard test method for measurement of thickness of anodic coatings on aluminum and of other nonconductive coatings on nonmagnetic basis metals with eddy-current instruments[S]. Pennsylvania: ASTM International, 2014.
[19] ASTM B 137, Standard test method for measurement of coating mass per unit area on anodically coated aluminum[S]. Pennsylvania: ASTM International, 2004.
[20] ASTM B 117, Standard practice for operating salt spray (fog) apparatus[S]. Pennsylvania: ASTM International, 2019.
[21] 李博, 胡伟叶. LD10连接座表面铬酸阳极氧化白斑原因分析[J]. 电镀与环保, 2011, 31(6): 43-46.
Li B, Hu W Y. Cause analysis of white spots formed on the surface of LD10 connection block in chromic acid anodization[J]. Electroplating and Pollution Control, 2011, 31(6): 43-46 (in Chinese).
[22] 苏景新, 张昭. 铝合金晶间腐蚀与剥蚀[J]. 中国腐蚀与防护学报, 2005, 25(3): 187-191.
Su J X, Zhang Z. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys[J]. Journal of Chinese Society for Corrosion and Protect, 2005, 25(3): 187-191 (in Chinese).
[23] 许孝敬, 吴桂潮. 含Sr7085型铝合金的晶间腐蚀和剥落腐蚀性能[J]. 材料热处理学报, 2011, 32(5): 22-25.
Xu X J, Wu G C. Sr addition on intergranular and exfoliation corrosion properties of 7085 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32(5): 22-25 (in Chinese).
[24] 余洪斌, 刘道新. 3种表面处理对2E12-T3铝合金晶间腐蚀和剥离腐蚀行为的影响[J]. 材料保护, 2012, 45(7): 22-24.
Yu H B, Liu D X. Effect on surface treatment on intergranular corrosion behavior and exfoliation corrosion behavior of 2E12-T3 aluminum alloy[J]. Journal of Materials Protection, 2012, 45(7): 22-24 (in Chinese).
[25] 苏景新. 铝锂合金剥蚀研究和分形维数在表征腐蚀中的应用[D]. 杭州: 浙江大学, 2006.
[26] 韩保红, 张骐, 孙志华, 等. 前处理工艺对航空铝锂合金硫酸阳极氧化膜层质量性能影响[J]. 航空材料学报, 2017, 37(5): 48-54.
Han B H, Zhang Q, Sun Z H, et al. Effect of pretreatment process on properties of aerospace Al-Li alloy sulfuric acid anodic film[J]. Journal of Aeronautical Materials, 2017, 37(5): 48-54 (in Chinese).
备注/Memo
收稿日期:2020-07-07;修回日期:2020-09-04
通信作者:程纪华,Email:nuaacjh@163.com