LIU Jianxiang*,PU Jiantang,ZHOU Lei,et al.Effect of Organic Sulfonate Additives on Properties of Hard Chromium Electroplating[J].Plating & Finishing,2021,(6):6-9.[doi:10.3969/j.issn.1001-3849.2021.06.002]
有机磺酸盐添加剂对电镀硬铬性能的影响
- Title:
- Effect of Organic Sulfonate Additives on Properties of Hard Chromium Electroplating
- 文献标志码:
- A
- 摘要:
- 以有机磺酸盐作为镀硬铬添加剂,在钢铁基材上电镀硬铬,研究有机磺酸盐硬铬添加剂在最佳含量下对阴极电流效率、沉积速度、镀层硬度和微裂纹的影响。结果表明:在CrO3为250 g/L、H2SO4为2.5 g/L、Cr3+为3.2 g/L,温度为55±2 ℃,Jk为55 A/dm2,有机磺酸盐硬铬添加剂最佳含量为4 g/L工艺条件下,电流效率可达19.5 %,平均沉积速度为54 ?m/h,镀层硬度大于1000 HV,镀硬铬层可形成窄而密的网状微裂纹。
- Abstract:
- The organic sulphonate was used as additive in hard chromium plating on steel substrate. The effects of organic sulphonate hard chromium additives on the current efficiency, deposition rate, hardness and micro-crack were studied. The results showed that when CrO3 was 250 g/L, H2SO4 was 2.5 g/L, Cr3+ was 3.2 g/L, temperature was 55±2 ℃, current density was 55 A/dm2 and the organic sulphonate additives was 4 g/L, the current efficiency was 19.5 %, average deposition rate was 54 ?m/h and hardness was greater than 1000 HV. The plated hard chrome layer can form narrow and dense network micro-cracks.
参考文献/References:
[1] 刘俊莲, 陈华三, 江冰. 电镀硬铬技术发展综述及操作要点[J]. 电镀与涂饰, 2013, 32(7): 14-20.
Liu J L, Chen H S, Jiang B. Review on development of hard chromium plating technology and operation key points[J]. Electroplating & Finishing, 2013, 32(7): 14-20 (in Chinese).
[2] Tian H H, Addie G R, Visintainer R J. Erosion-corrosion performance of high-Cr cast iron alloys in flowing liquid-solid slurries[J]. Wear, 2009, 267(11): 2039-2047.
[3] 李昌树. 高效六价铬镀铬工艺研究[D]. 沈阳: 沈阳理工大学, 2008.
[4] 柳岩. 锻钢镀硬铬工艺研究[J]. 电镀与环保, 2012, 32(6): 21-23.
Liu Y. A study of hard chromium electroplating process for forged steel[J]. Electroplating & Pollution Control, 2012, 32(6): 21-23 (in Chinese).
[5] 李新梅. 高效复合镀铬添加剂的研究[D]. 西安: 西安理工大学, 2002.
[6] 张理, 郭震, 蒋晓明, 等. 电镀硬铬工艺原理及铬层组织与性能浅析[J]. 材料保护, 2019, 52(4): 142-147.
Zhang L, Guo Z, Jiang X M, et al. Principle of hard chrome electroplating and analysis on structure and performance of chromium layer[J]. Materials Protection, 2019, 52(4): 142-147 (in Chinese).
[7] 蒲小琴. 添加剂对镀硬铬溶液性能的改善[J]. 涂装与电镀, 2010, (3): 25-27.
Pu X Q. The improvement of additive agent for performances of hard chromium plating solution[J]. Painting & Electroplating, 2010, (3): 25-27 (in Chinese).
[8] 赵黎云, 钟丽萍, 黄逢春. 电镀铬添加剂的发展与展望[J]. 电镀与精饰, 2001, (5): 9-12.
Zhao L Y, Zhong L P, Huang F C. Development and prospect for chromium electroplating additives[J]. Plating & Finishing, 2001, (5): 9-12 (in Chinese).
[9] 常永福. 缸筒内表面镀铬稳定镀液中Cr(Ⅲ)的方法[J]. 电镀与精饰, 2010, 32(6): 35-36.
Chang Y F. Chromium electroplating on cylinder inner wall method for stabilizing Cr(Ⅲ) in the plating bath[J]. Plating & Finishing, 2010, 32(6): 35-36 (in Chinese).
[10] 覃奇贤, 刘淑兰. 电镀液的电流效率及其测定方法[J]. 电镀与精饰, 2008, (4): 27-29.
Qin Q X, Liu S L. Current efficiencies of electroplating bath and measurement method[J]. Plating & Finishing, 2008, (4): 27-29 (in Chinese).
[11] 王力强, 杨由凯, 赵晴, 等. 一种新型微裂纹镀铬工艺及镀层性能研究[J]. 电镀与精饰, 2018, 40(1): 17-21.
Wang L Q, Yang Y K, Zhao Q, et al. Study on a new type of micro-crack chrome plating process and the coating performance[J]. Plating & Finishing, 2018, 40(1): 17-21 (in Chinese).
[12] 王淑振, 朱增伟, 陈斌, 等. 工艺条件对柔性挤压电镀无裂纹硬铬电流效率的影响[J]. 电镀与涂饰, 2016, 35(1):6-9.
Wang S Z, Zhu Z W, Chen B, et al. Effects of process conditions on current efficiency of crack-free hard chrome electroplating with flexible extrusion[J]. Electroplating & Finishing, 2016, 35(1): 6-9 (in Chinese).
[13] 沈品华. 现代电镀手册[M]. 北京: 机械工业出版社, 2010.
[14] 崔楠, 吴扬, 张颖. 环保型硬铬镀层的显微硬度研究[J]. 电镀与环保, 2019, 39(6): 4-6.
Cui N, Wu Y, Zhang Y. Study on microhardness of eco-friendly hard chromium coatings[J]. Electroplating & Pollution Control, 2019, 39(6): 4-6 (in Chinese).
[15] Mekicha M A, De Rooij M B, Matthews D T A, et al. The effect of hard chrome plating on iron fines formation[J]. Tribology International, 2020, 142: 106003.
相似文献/References:
[1]张 帅,邵刚勤,程旭东,等.Ga对Al-Zn-In-Mg-Ga-Sn合金阳极
电化学性能的影响[J].电镀与精饰,2018,(12):1.[doi:10.3969/j.issn.1001?3849.2018.12.001]
ZHANG Shuai,SHAO Gangqin,CHENG Xudong,et al.Effects of Ga on Electrochemical behavior of Al-Zn-In-Mg-Ga-Sn alloy anode[J].Plating & Finishing,2018,(6):1.[doi:10.3969/j.issn.1001?3849.2018.12.001]
[2]吴双成*,储荣邦.六价铬镀铬添加剂作用原理[J].电镀与精饰,2020,(2):26.[doi:10.3969/j.issn.1001-3849.2020.02.006]
WU Shuangcheng*,CHU Rongbang.Mechanism of Additives for Hexavalent Chromium Plating[J].Plating & Finishing,2020,(6):26.[doi:10.3969/j.issn.1001-3849.2020.02.006]
[3]石海明,黄章崎,所彭帮,等.阳极电流密度对电镀镍阳极溶解性能的影响[J].电镀与精饰,2020,(3):1.[doi:10.3969/j.issn.1001-3849.2020.03.001]
SHI Haiming,HUANG Zhangqi,SUO Peng bang,et al.Effect of Anode Current Density on Dissolution Properties of Electroplated Nickel Anode[J].Plating & Finishing,2020,(6):1.[doi:10.3969/j.issn.1001-3849.2020.03.001]
[4]刘颖*,邢希瑞,田栋,等.酸性一价铜电镀铜的工艺及能效分析[J].电镀与精饰,2024,(4):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
Liu Ying*,Xing Xirui,Tian Dong,et al.Energy efficiency analysis of copper electroplating employing acidic cuprous solution[J].Plating & Finishing,2024,(6):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
备注/Memo
收稿日期: 2020-03-30;修回日期: 2020-05-25
作者简介: 刘建祥(1990—),男,山东临沂,硕士研究生,主要从事金属与非金属表面处理研究。email: ljxiang68@163.com
基金项目: 临沂市重点研发计划(2019ZDYF021)