YANG Jinmeng,LIU Xiaoxiang,BI Jun,et al.Preparation and Properties of Corrosion Resistance Coating on Stainless Steel Bipolar Plate[J].Plating & Finishing,2021,(10):8-13.[doi:10.3969/j.issn.1001-3849.2021.10.002]
不锈钢双极板耐腐蚀涂层制备及性能
- Title:
- Preparation and Properties of Corrosion Resistance Coating on Stainless Steel Bipolar Plate
- 关键词:
- 质子交换膜燃料电池; 316L不锈钢双极板; 表面改性; 电化学氮化; 耐腐蚀性能
- 文献标志码:
- A
- 摘要:
- 采用室温恒压电化学氮化技术在316L不锈钢表面成功制备了氮化涂层。通过X射线光电子能谱(XPS)、电化学阻抗(EIS)、动电位极化和接触角测量等方法对涂层的组成、疏水性和耐腐蚀性进行了分析。结果表明:涂层表面主要由铬的氧化物和混合氮化物(CrN+Cr2N)组成。氮化不锈钢接触角由改性前的76.2 °提高到106.7 °,腐蚀电位较裸钢提高了530 mV,腐蚀电流密度下降了3个数量级,说明氮化涂层能够有效保护不锈钢基底免受腐蚀。此外,在模拟PEMFC阴极环境中进行了10 h的恒电位极化测试,腐蚀电流密度小于1 μA cm-2,验证了涂层长期的稳定性。
- Abstract:
- The nitrided coating on 316L stainless steel was successfully prepared by room temperature potentiostatic electrochemical nitridation. The composition, hydrophobicity and corrosion resistance of the coatings were analyzed by X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and contact angle measurement. The results showed that the coating surface was mainly composed of chromium oxide and mixed nitride (CrN + Cr2N). Moreover, the contact angle of nitrided stainless steel was increased from 76.2 °before modification to 106.7 °, the corrosion potential was increased by 530 mV and the corrosion current density was decreased by three orders of magnitude, which indicated that the nitrided coating could effectively protect the stainless steel substrate from corrosion. In addition, the potentiostatic polarization test was conducted for 10 h in a simulated PEMFC cathode environment, and the corrosion current density was less than 1 μA?cm-2, which verified the long-term stability of the coating.
参考文献/References:
[1] Hu Q, Zhang D, Fu H, et al. Investigation of stamping process of metallic bipolar plates in PEM fuel cell-Numerical simulation and experiments[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13770-13776.
[2] 王东, 李国欣. 质子交换膜燃料电池金属双极板材料腐蚀性能研究[J]. 复旦学报(自然科学版), 2004, (4): 56-61.
Wang D, Li G X. Study on corrosion performance of metal bipolar plate materials for proton exchange membrane fuel cell[J]. Fudan Journal (Natural Science Edition), 2004, (4): 56-61 (in Chinese).
[3] 王文涛, 吴博, 李红凯, 等. PEMFC不锈钢双极板离子镀CrNX薄膜表面改性[J]. 电源技术, 2009, 33(5): 371-374.
Wang W T, Wu B, Li H K, et al. Surface modification of CrNx film on PEMFC stainless steel bipolar plate by ion plating[J]. Power Technology, 2009, 33(5):371-374 (in Chinese).
[4] Brady M P, Weisbrod K, Zawodzinski C, et al. Assessment of thermal nitridation to protect metal bipolar plates in polymer electrolyte membrane fuel cells[J]. Electrochemical and Solid-State Letters, 2002, 5(11): A245-A247.
[5] 柳小祥, 范文俊, 王新东, 等. 316L不锈钢金属双极板的电解抛光工艺[J]. 电镀与精饰, 2020, 42: 6-11.
Liu X X, Fan W J, Wang X D, et al. Electropolishing process of 316L stainless steel bipolar plate[J]. Plating & Finishing, 2020, 42: 6-11 (in Chinese).
[6] Menthe E, Rie K T, Schultze J W, et al. Structure and properties of plasma-nitrided stainless steel[J]. Surface & Coatings Technology, 1995, 74: 412-416.
[7] Lei M K, Zhu X M. Role of Nitrogen in Pitting corrosion resistance of a high-nitrogen face-centered-cubic phase formed on austenitic stainless steel[J]. Journal of the Electrochemical Society, 2005, 152(8): B291-B295.
[8] Riviere J P, Cahoreau M. Chemical bonding of nitrogen in low energy high flux implanted austenitic stainless steel[J]. Journal of Applied Physics, 2002, 91(10): 6361-6366.
[9] Chyou S D, Shih H C. X-ray photoelectron spectroscopy and Auger electron spectroscopy studies on the passivation behavior of plasma-nitrided low alloy steel in nitric acid[J]. Materials Science & Engineering A, 1991, 148(2): 241-251.
[10] Gontijo L C, Machado R, Miola E J, et al. Characterization of plasma-nitrided iron by XRD, SEM and XPS[J]. Surface & Coatings Technology, 2004, 183(1): 10-17.
[11] Wang H, Teeter G, Turner J A, et al. Modifying a stainless steel via electrochemical nitridation[J]. Journal of Materials Chemistry, 2011, 21(7): 2064-2066.
[12] Burstein G T, Hutchings I M, Sasaki K, et al. Electrochemically induced annealing of stainless-steel surfaces[J]. Nature, 2000, 407(6806): 885-887.
[13] Kim D, Clayton C R, Oversluizen M, et al. On the question of nitrate formation by N-containing austenitic stainless steels[J]. Materials Science & Engineering A, 1994, 186(1-2): 163-169.
[14] Olefjord I, Wegrelius L. The influence of nitrogen on the passivation of stainless steels[J]. Corrosion Science, 1996, 38(7): 1203-1220.
[15] Nam N D, Kim J G, Hwang W S, et al. Effect of bias voltage on the electrochemical properties of TiN coating for polymer electrolyte membrane fuel cell[J]. Thin Solid Films, 2009, 517(17): 4772-4776.
备注/Memo
收稿日期: 2020-06-12;修回日期: 2020-09-04
作者简介: 杨金梦(1994—),女,硕士研究生,email:1126372185@qq.com
通信作者: 刘高阳,email:liugy@ustb.edu.cn;王新东,email:battery@ustb.edu.cn
基金项目: 国家重点研发项目(2018YFB1502403)