PDF下载 分享
[1]姚 宏,于七龙,那 琳*.基于粒子群优化算法-广义回归神经网络的磷化膜耐蚀性预测模型[J].电镀与精饰,2021,(11):1-6.[doi:10.3969/j.issn.1001-3849.2021.11.001]
 YAO Hong,YU Qilong,NA Lin*.Prediction Model for Corrosion Resistance of Phosphating Film Based on Particle Swarm Optimization Algorithm and Generalized Regression Neural Network[J].Plating & Finishing,2021,(11):1-6.[doi:10.3969/j.issn.1001-3849.2021.11.001]
点击复制

基于粒子群优化算法-广义回归神经网络的磷化膜耐蚀性预测模型

参考文献/References:

[1] 宗鹏洋, 王轶辰. 基于神经网络的软件质量评价综述[J]. 计算机科学, 2019, 46(11A): 507-516.
Zong P Y, Wang Y C. Software quality evaluation based on neural network: a systematic literature review[J]. Computer Science, 2019, 46(11A): 507-516 (in Chinese).
[2] 冯长敏, 张炳江. 基于BP神经网络的分段函数连续优化处理[J]. 北京信息科技大学学报(自然科学版), 2019, 34(1): 18-22.
Feng C M, Zhang B J. Continuous optimization of piecewise functions based on BP neural network[J]. Journal of Beijing Information Science & Technology University, 2019, 34(1): 18-22 (in Chinese).
[3] Wang H H, Wu Z L, Xing E P. Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications[J]. Pac Symp Biocomput, 2019, 24: 54-65.
[4] Liu Z P, Chai X J, Chen X L. Deep memory and prediction neural network for video prediction[J]. Neurocomputing, 2019, 331: 235-241.
[5] 李娜, 刘冰, 王伟. 基于单隐层前馈神经网络的优化算法[J]. 科学技术与工程, 2019, 19(1): 136-141.
Li N, Liu B, Wang W. A optimization algorithm based on single hidden layer feedforward neural networks[J]. Science Technology and Engineering, 2019, 19(1): 136-141 (in Chinese).
[6] 王昕. 基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J]. 电网技术, 2017, 41(2): 455-461.
Wang X. Combined PV power forecast based on firefly algorithm generalized regression neural network[J]. Power System Technology, 2017, 41(2): 455-461 (in Chinese).
[7] 陈超, 廖飞红, 周畅. 基于改进径向基神经网络的推力补偿算法[J]. 电子工业专用设备, 2020, 49(4): 1-5.
Chen C, Liao F H, Zhou C. Thrust force compensation algorithm based on improved radial basis function neural network[J]. Equipment for Electronic Products Manufacturing, 2020, 49(4): 1-5 (in Chinese).
[8] 张兆晨, 冀俊忠. 基于循环神经网络的时序fMRI数据分类方法研究[J]. 小型微型计算机系统, 2018, 39(7): 1426-1430.
Zhang Z C, Ji J Z. Research on the classification method of time-series fMRI data based on recurrent neural network[J]. Journal of Chinese Computer Systems, 2018, 39(7): 1426-1430 (in Chinese).
[9] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. 浙江大学学报(工学版), 2012, 46(2): 194-198.
Yu X M, Jiang J P. Adaptive networked control system based on delay prediction using neural network[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(2): 194-198 (in Chinese).
[10] 张翔, 李秋艺. SiO2颗粒分散液浓度对建筑结构钢锌系复合磷化膜耐蚀性的影响[J]. 电镀与精饰, 2020, 42(12): 10-14.
Zhang X, Li Q Y. Effect of concentration of SiO2 particles dispersion solution on corrosion resistance of zinc composite phosphating film on surface of building structural steel[J]. Plating & Finishing, 2020, 42(12): 10-14 (in Chinese).
[11] Hadzima B, Pastorek F, Borko K, et al. Effect of phosphating time on protection properties of hurealite coating: differences between ground and shot peened HSLA steel surface[J]. Surface and Coatings Technology, 2019(375): 608-620.
[12] Bensabra H, Azzouz N, Chopart J P. Effect of zinc phosphating treatment on the pitting corrosion resistance of steel reinforcement[J]. Revue de Metallurgie, 2013, 110(2): 153-163.
[13] 李龙澍, 张效见. 一种新的自适应惯性权重混沌PSO算法[J]. 计算机工程与应用, 2018, 54(9): 139-144.
Li L S, Zhang X J. New chaos particle swarm optimization based on adaptive inertia weight[J]. Computer Engineering and Applications, 2018, 54(9): 139-144 (in Chinese).
[14] 卢超, 杨翠丽, 乔俊飞. 基于PSO算法的动态模块化神经网络结构设计[J]. 控制与决策, 2018, 33(6): 1055-1061.
Lu C, Yang C L, Qiao J F. Dynamic modular neural network structure design based on PSO algorithm[J]. Control and Decision, 2018, 33(6): 1055-1061 (in Chinese).

备注/Memo

收稿日期: 2021-04-28;修回日期: 2021-06-30
作者简介: 姚宏(1981-),女,硕士,副教授,email:yao_20yao@126.com。
*通信作者: 那琳(1977-),男,硕士,副教授,主要研究方向:计算机应用技术。
基金项目: 河北省秦皇岛市科技局项目(201703A017)

更新日期/Last Update: 2021-11-10