WANG Ying,BI Yajun*,WANG Zhengyi,et al.Influence of Ultrasonic Power on Structure and Properties of Electroless Tin Plating on Red Copper[J].Plating & Finishing,2021,(11):17-22.[doi:10.3969/j.issn.1001-3849.2021.11.004]
超声波功率对紫铜化学镀锡结构和性能的影响
- Title:
- Influence of Ultrasonic Power on Structure and Properties of Electroless Tin Plating on Red Copper
- 文献标志码:
- A
- 摘要:
- 在紫铜化学镀锡过程中引入超声波,研究了超声波功率对锡镀层的沉积速率、形貌、相结构和耐蚀性能的影响。结果表明:不同超声波功率下制备的锡镀层物相都为Sn和Cu,无明显择优取向。随着超声波功率提高,锡镀层的沉积速率呈现先增大后减小的趋势,形貌发生显著变化,容抗弧半径和|Z|0.01 Hz都先增大后减小,而腐蚀速率先降低后增加。适当提高超声波功率能促进化学镀锡反应的持续进行,同时提高形核率,实现结晶细化使锡镀层的致密性提高,耐蚀性能逐步提高。较佳的超声波功率为100 W,制备的锡镀层沉积速率达到5.3×10-2 mg/(mm2·h),其形貌质量较好,表面的颗粒大小均匀、紧密堆积,而且具有良好的耐蚀性能,其|Z|0.01 Hz是常规锡镀层的1.7倍,腐蚀速率较常规锡镀层降低了11.1%。
- Abstract:
- Ultrasonic was introduced in the process of electroless tin plating on red copper, and the influence of ultrasonic power on the deposition rate, morphology, phase structure and corrosion resistance of tin coatings was studied. The results showed that the phase composition of tin coatings prepared under different ultrasonic power was Sn and Cu, and there was no obvious preferred orientation. With the increase of ultrasonic power, the deposition rate of tin coating increased firstly and then decreased, and the morphology of tin coatings changed significantly. Both capacitive reactance arc radius and |Z| 0.01 Hz show a trend of first increasing and then decreasing, while the corrosion rate shows a trend of first decreasing and then increasing. Appropriate increasing of ultrasonic power can promote the continuous reaction of electroless tin plating and improve the nucleation rate, then realize crystallization refinement and improve the densification of tin coatings, therefore the corrosion resistance of tin coatings was gradually improved. The ideal ultrasonic power was 100 W, and the tin coating with a deposition rate of 5.3×10-2 mg/(mm2·h), better appearance quality and corrosion resistance was prepared. The particles was uniform and tightly packed on surface of the tin coating, and its |Z|0.01 Hz was 1.7 times of that of the conventional tin coating, and the corrosion rate is 11.1% lower than that of conventional tin coating.
参考文献/References:
[1] 赵杰. 低温化学镀锡反应历程及镀层性能影响因素的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
[2] Senda A, Kanbayashi Y, Takano Y, et al. Effects of additives on the deposition rate of autocatalytic electroless tin plating[J]. Journal of The Surface Finishing Society of Japan, 2009, 46(7): 667-669.
[3] 张丹丹, 何奕波. 化学沉积法制备功能性化学镀锡层的研究[J]. 电镀与环保, 2020, 40(1): 26-28.
Zhang D D, He Y B. Study on preparation of functional electroless tin coating by chemical deposition method[J]. Electroplating & Pollution Control, 2020, 40(1): 26-28(in Chinese).
[4] 何涛. 超声波化学镀锡及其性能研究[J]. 电镀与精饰, 2021, 43(2): 6-10.
He T. Ultrasonic-assisted electroless tin plating and its properties[J]. Plating & Finishing, 2021, 43(2): 6-10(in Chinese).
[5] Liu S, Qiao X J, Liu W N, et al. Mechanism of ultrasonic treatment under nickel salt solution and its effect on electroless nickel plating of carbon fibers[J]. Ultrasonics Sonochemistry, 2019, 52: 493-504.
[6] Liu W N, Qiao X J, Liu S, et al. A new process for pre-treatment of electroless copper plating on the surface of mica powders with ultrasonic and nano-nickel[J]. Journal of Alloys and Compounds, 2019, 791: 613-620.
[7] 贾启华. 超声波辅助化学镀工艺及性能研究[J]. 电镀与精饰, 2020, 42(3): 24-27.
Jia Q H. Study on ultrasound-assisted electroless plating technology and properties[J]. Plating & Finishing, 2020, 42(3): 24-27(in Chinese).
[8] 杨丽媛, 徐璐, 高蒙, 等. 直升机结构钢涂层体系防护性能在模拟海洋大气环境中的变化[J]. 装备环境工程, 2019, 16(3): 49-53.
Yang L Y, Xu L, Gao M, et al. Degradation of protective properties of coatings on structural steel used on helicopter in simulated ocean atmospheric environment[J]. Equipment Environmental Engineering, 2019, 16(3): 49-53(in Chinese).
[9] Wang J H. Influence of storage temperature on the corrosion behavior of tinplate in citric acid solution[J]. International Journal of Electrochemical Science, 2019, 14(1): 59-74.
[10] Ramesh S, Nayaka H S. Investigation of tribological and corrosion behavior of Cu-Ti alloy processed by multiaxial cryoforging[J]. Journal of Materials Engineering and Performance, 2020, 29: 3287-3296.
[11] 董海英, 胡丽娟, 梁婉怡, 等. 稀土Ce对316L不锈钢耐腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2018, 30(5): 489-495.
Dong H Y, Hu L J, Liang W Y, et al. Effect of rare earth element Ce on corrosion resistance of 316L stainless steel[J]. Corrosion Science and Protection Technology, 2018, 30(5): 489-495(in Chinese).
[12] Gilbert J L, Khullar P. Analysis of electrochemical impedance spectra using phase angle symmetry across log frequency[J]. Journal of The Electrochemical Society, 2020, 167(2): 021505.
[13] Harb S V, Bassous N J, Souza TACD, et al. Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants[J]. Materials Science and Engineering: C, 2020(116): 111149.
相似文献/References:
[1]李 祥*,李培英.铜质电子产品表面化学镀锡研究[J].电镀与精饰,2020,(3):39.[doi:10.3969/j.issn.1001-3849.2020.03.008]
LI Xiang*,LI Peiying.Study on Electroless Tin Plating on Copper Electronic Products[J].Plating & Finishing,2020,(11):39.[doi:10.3969/j.issn.1001-3849.2020.03.008]
[2]刘文彦*,魏 媛,虞正鹏,等.超声波功率对电沉积Co-Mo-P镀层性能的影响[J].电镀与精饰,2023,(12):25.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.004]
Liu Wenyan*,Wei Yuan,Yu Zhengpeng,et al.Effect of ultrasonic power on properties of electrodeposited Co-Mo-P coatings[J].Plating & Finishing,2023,(11):25.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.004]
[3]赵晓霞,陈立强,田宏波.doi: 10.3969/j.issn.1001-3849.2025.01.002硅异质结太阳能电池中化学镀锡工艺的研究[J].电镀与精饰,2025,(01):9.
Zhao XiaoxiaChen LiqiangTian Hongbo.Research on chemical tin precipitation process in heterojunction solar cells[J].Plating & Finishing,2025,(11):9.
备注/Memo
收稿日期: 2021-03-20;修回日期: 2021-04-28
*通信作者: 毕亚军(1974—),研究生,副教授,主要研究方向:电工电子技术,email:biyj@nciae.edu.cn
基金项目: 河北省科技计划项目(17211711)