SHI Qikun,ZENG Yan,LIANG Feng*.Direct Writing 3D Printing of Ferrite Composite Material[J].Plating & Finishing,2022,(4):42-46.[doi:10.3969/j.issn.1001-3849.2022.04.009]
铁氧体复合材料的直写3D打印工艺
- Title:
- Direct Writing 3D Printing of Ferrite Composite Material
- Keywords:
- 3D printing; ??irect ink writing; ??errite composites; ??oft magnetic materials; ??ilylation treatment
- 分类号:
- TB332
- 文献标志码:
- A
- 摘要:
- 将硅烷化处理的 Fe 3 O 4 纳米颗粒与聚二甲基硅氧烷( PDMS )混合得到可用于直写式 3D 打印的复合材料墨水,并利用直写式 3D 打印机完成复杂结构的制备。该铁氧体复合材料的饱和磁化强度为 37 emu/g ,剩余磁化强度为 0.5 emu/g ,矫顽力为 16 oe ,有效磁导率的工作频率范围可达 5 GHz ,在复杂结构磁体的制造以及射频电路电子器件应用方面表现出良好的前景。
- Abstract:
- : The silanized Fe 3 O 4 nanoparticles were mixed with polydimethylsiloxane ( PDMS ) to obtain a composite material ink that could be used for direct writing 3D printing , and a direct writing 3D printer was used to complete the preparation of complex structures. The ferrite composite material had a saturation magnetization of 37 emu/g , a residual magnetization of 0.5 emu/g , a coercivity of 16 oe , and an effective magnetic permeability operating frequency range of up to 5 GHz. The composite material shows good prospects in the manufacture of complex structure magnets and the application of radio frequency circuit electronic devices.
参考文献/References:
[1] Zhou N, Liu C, Lewis J A, et al. Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications[J]. Advanced Materials, 2017, 29(15): 1605198.
[2] Kohlmeyer R R, Blake A J, Hardin J O, et al. Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes[J]. Journal of Materials Chemistry A, 2016, 4(43): 16856-16864.
[3] Au A K , Huynh W , Horowitz L F , et al. 3D-Printed microfluidics[J]. Angewandte Chemie International Edition, 2016, 55(12): 3862-3881.
[4] Homan K A, Gupta N, Kroll K T, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nature Methods, 2019, 16(3): 255-262.
[5] Li Q, Lewis J A. Nanoparticle inks for directed assembly of three‐dimensional periodic structures[J]. Advanced Materials, 2003, 15(19): 1639-1643.
[6] Khondoker M A H, Ostashek A, Sameoto D. Direct 3D printing of stretchable circuits via liquid metal co‐extrusion within thermoplastic filaments[J]. Advanced Engineering Materials, 2019, 21(7): 1900060.
[7] Wei H, Li K, Liu W G, et al. 3D printing of free‐standing stretchable electrodes with tunable structure and stretchability[J]. Advanced Engineering Materials, 2017, 19(11): 1700341.
[8] Li L, Tirado A, Nlebedim I C, et al. Big area additive manufacturing of high performance bonded NdFeB magnets[J]. Scientific Reports, 2016(6): 36212.
[9] Hodaei A, Akhlaghi O, Khani N, et al. Single additive enables 3D printing of highly loaded iron oxide suspensions[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9873-9881.
备注/Memo
收稿日期: 2020-02-24 修回日期: 2020-03-19 作者简介: 石其坤, email : klaus_shi@163.com