GAO Fengxian,XU Lijuan,ZHANG Yun,et al.Germanium-Doped Modified Nano-Silicon Increases the First Coulombic Efficiency[J].Plating & Finishing,2022,(7):50-54.[doi:10.3969/j.issn.1001-3849.2022.07.009]
锗掺杂改性纳米硅提升首次充放电效率
- Title:
- Germanium-Doped Modified Nano-Silicon Increases the First Coulombic Efficiency
- Keywords:
- nano silicon ; germanium doping ; the first Coulombic efficiency ; electrochemical i mped ance
- 分类号:
- TM912.9
- 文献标志码:
- A
- 摘要:
- 纳米硅( Si )具有较高的充放电比容量,被认为是下一代锂离子电池最有前途的负极材料之一。然而,由于初始库仑效率低,严重限制了 Si 的实际应用。采用锗( Ge )对 Si 进行掺杂改性,并采用硼( B )和硫化锂( Li 2 S )作为对比研究,分别记为 Si-Ge 、 Si-B 和 Si-Li 2 S 。 X 射线衍射测试表明四种材料均在 28° 处有一个明显晶体硅的特征衍射峰。 Si 的首次放电比容量为 2640.5 mAh/g ,首次充电比容量为 437.6 mAh/g ,首次充放电效率为 16.6% 。添加锗改性材料 Si-Ge 的首次放电比容量为 2415.2 mAh/g ,首次充电比容量为 1191.7 mAh/g ,首次充放电效率为 49.3% ,在首次充放电效率方面有显著提升。经交流阻抗测试表明 Si-Ge 的电荷转移阻抗 R ct 为 136.7 Ω 显著小于 Si 的 465.4 Ω ,表明材料的导电性能提高。
- Abstract:
- : Nano-silicon has a higher charge-discharge capacity than silicon , and is considered to be one of the most potential potential uses of lithium batteries. However , due to the low first Coulomb efficiency , the practical application of silicon is limited. Germanium ( Ge ) was used to dope Si , and boron ( B ) and graphite ( Li 2 S ) were used as a comparative study , denoted as Si-Ge , Si-B and Si-Li 2 S , respectively. This material has an obvious characteristic peak of crystalline silicon at 28°. The first discharge specific capacity of Si is 2640.5 mAh/g , the first charge specific capacity is 437.6 mAh/g , and the charge-discharge efficiency is 16.6%. The first discharge specific capacity of the material Si-Ge is 2415.2 mAh/g , the first charge specific capacity is 1191.7 mAh/g , and the first charge-discharge flow rate is 49.3% , which significantly improves the first charge-discharge efficiency. The actual AC test verifies that the emission radiation R ct of Si-Ge is 136.7 Ω , which is significantly smaller than that of Si 465.4 Ω , which ensures that the electrical conductivity of the material is improved.
参考文献/References:
[1] 刘柏男 , 徐泉 , 褚赓 , 等 . 锂离子电池高容量硅碳负极材料研究进展 [J]. 储能科学与技术 , 2016, 5(4): 417-421.
[2] Azam M A, Safie N E, Ahmad A S, et al. Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review[J]. Journal of Energy Storage, 2021, 33: 102096.
[3] 张莉 , 赵学波 . 锂离子电池硅基负极材料表面和界面调控的研究进展 [J]. 辽宁石油化工大学学报 , 2020, 40(4): 49-58.
[4] 孙仲振 , 张静 , 樊培贤 , 等 . 锂离子电池预锂化技术的研究 [J]. 化工管理 , 2020, 25: 77-78+81.
[5] 陈思 , 张勇 , 张雪倩 , 等 . 锂离子电池负极中一步球磨硅碳材料的应用 [J]. 上海大学学报 ( 自然科学版 ), 2020, 26(4): 578-585.
[6] 朱瑞 , 邓卫斌 , 李军 , 等 . 锂离子电池硅 - 碳负极材料的研究进展 [J]. 化工新型材料 , 2018, 46(7): 34-39.
[7] Zhang W, Fang S, Wang N, et al. A compact silicon – carbon composite with an embedded structure for high cycling coulombic efficiency anode materials in lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(13): 2487-2496.
[8] Hsu Y C, Hsieh C C, Liu W R. Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries[J]. Surface and Coatings Technology, 2020, 387: 125528-125536.
[9] Chen C Y, Liang A H, Huang C L, et al. The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery[J]. Journal of Alloys and Compounds, 2020, 844: 156025-156034.
[10] Zhu B, Liu G L, Lv G X, et al. Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes[J]. Science Advances, 2019, 5(11): 1-8.
[11] Chen Y, Hu Y, Shao J, et al. Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries[J]. Journal of Power Sources, 2015, 298: 130-137.
[12] Hu Y, Yu B, Qi X, et al. The preparation of graphite/silicon@carbon composites for lithium-ion batteries through molten salts electrolysis[J]. Journal of Materials Science, 2020, 55(23): 10155-10167.
备注/Memo
收稿日期: 2021-12-04 修回日期: 2022-01-28 作者简介: 高风仙( 1981 - ),女,博士,讲师,主要研究方向无机功能性材料, Email : gaofx1008@163.com * 通信作者: 陈垒( 1984 - ),男,博士,副教授,主要研究方向为锂电池材料, Email : chenlei904@126.com 基金项目: 2021 年度河南省重点研发与推广专项( 212102210215 )、 2021 年度河南工程学院科研培育基金( PYXM202101 )?/html>