LIN Li*,HAN Hua.Comparison of Mechanical Properties of Ni/WC Composite Coating and Ni-W Alloy Coating[J].Plating & Finishing,2022,(8):7-12.[doi:10.3969/j.issn.1001-3849.2022.08.002]
Ni/WC复合镀层与Ni-W合金镀层力学性能比较
- Title:
- Comparison of Mechanical Properties of Ni/WC Composite Coating and Ni-W Alloy Coating
- Keywords:
- pure Ni coating ; Ni/WC composite coating ; Ni-W alloy coating ; hardness ; toughness ; tensile strength
- 文献标志码:
- A
- 摘要:
- 在 Q235 钢表面分别制备纯 Ni 镀层、 Ni/WC 复合镀层、 Ni-W 合金镀层,测试并表征了不同镀层的成分、晶相结构、硬度、韧性、弹性及抗拉强度。结果表明: Ni/WC 复合镀层中 WC 颗粒弥散分布,含量约为 6.52% 。 Ni-W 合金镀层的成分以 Ni 和 W 元素为主, W 元素质量分数达到 34.2% 。与纯 Ni 镀层相比, Ni/WC 复合镀层和 Ni-W 合金镀层的硬度分别提高了约 112 HV 、 232 HV ,抗拉强度分别提高了 240 MPa 、 420 MPa 。 Ni 与 W 诱导共沉积形成置换固溶体起到细化晶粒和固溶强化的作用,使 Ni-W 合金镀层的平整度和致密性明显好于 Ni/WC 复合镀层,抵抗塑性变形能力和弹性恢复能力增强,能够较大幅度提高 Q235 钢制件整体性能。
- Abstract:
- : Pure Ni coating , Ni/WC composite coating and Ni-W alloy coating were prepared on the surface of Q235 steel respectively , and the composition , crystal phase structure , hardness , toughness , elasticity and tensile strength of different coatings were characterized and tested. The results showed that WC particles was distributed diffusing in Ni/WC composite coating and its content was about 6.52% , Ni-W alloy coating was mainly composed of Ni and W , and the mass fraction of W reached 34.2%. Compared with pure Ni coating , the hardness of Ni/WC composite coating and Ni-W alloy coati ng was increased by 112 HV and 232 HV , and the tensile strength was increased by 240 MPa and 420 MPa , respectively. The replacement solid solution formed by Ni and W induced co-deposition plays a role in grain refinement and solution strengthening , so the flatness and compactness of Ni-W alloy coating were obviously better than that of Ni/WC composite coating , and the plastic deformation resistance and elastic recovery ability were enhanced , it can greatly improve the overall performance of Q235 steel parts.
参考文献/References:
[1] 王培 , 叶源盛 . Q235 钢表面激光熔覆钛涂层 [J]. 应用激光 , 2018, 38(3): 377-381.
[2] 徐峰 , 李文虎 , 艾桃桃 , 等 . Q235 钢表面氩弧熔覆 TiC 复合涂层的组织与性能 [J]. 表面技术 , 2012, 41(5): 53-55.
[3] Wang B, Xue W B, Wu J, et al. Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electro lytic borocarburizing[J]. Journal of Alloys and Compounds, 2013(578): 162-169.
[4] Qi Y, Liang W P, Miao Q, et al. Corrosion behavior and antifouling ability of Cu-Zn-Al/Zn-Al composite coating on Q235 steel[J]. Surface and Coatings Technology, 2021(405): 126614.
[5] 周绍安 , 贾卫平 , 吴蒙华 , 等 . 纳米 ZrO 2 微粒对电沉积 Ni 基复合镀层性能的影响 [J]. 兵器材料科学与工程 , 2020, 44(4): 6-11.
[6] 孟媛媛 , 阚洪敏 , 崔世强 , 等 . 镍基纳米复合镀层的研究进展 [J]. 功能材料 , 2020, 51(2): 2039-2044.
[7] 常锐 . 碳化硼微粉表面制备 Ni-W 镀层的工艺探索 [J]. 运城学院学报 , 2019, 37(6): 5-8.
[8] Fan H, Zhao Y P, Jiang J, et al. Improvement of microstructure and wear resistance of the Ni-La 2 O 3 nanocomposite coatings by jet-electrodeposition[J]. Journal of Electronic Materials, 2021(50): 3429-3437.
[9] Nayana K O, Ranganatha S, Shubha H N, et al. Effect of sodium lauryl sulphate on microstructure, corrosion resistance and microhardness of electrodeposition of Ni-Co 3 O 4 composite coatings[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2371-2383.
[10] 赵旭山 , 谭澄宇 , 陈文敬 , 等 . Ni-SiC 复合镀层电结晶初期动力学分析 [J]. 中国有色金属学报 , 2008, 18(5): 823-828.
[11] 杨防祖 , 黄令 , 许书楷 , 等 . 非晶态 Ni-W/ZrO 2 复合镀层的制备、热处理及腐蚀行为 [J]. 物理化学学报 , 2009, 25(5): 864-868.
[12] 武占文 , 陈吉 , 朴楠 , 等 . Ni-WC 纳米复合镀层的制备及钝化性能研究 [J]. 金属学报 , 2013, 49(10): 1185-1190.
[13] 张小红 , 申景园 , 孙宇 , 等 . 挤压致密超细 WC/ 纳米 Al 2 O 3 弥散强化铜基复合材料的组织性能研究 [J]. 粉末冶金技术 , 2019, 37(6): 422-427.
[14] 张冰怡 , 张莎莎 , 姚正军 , 等 . 电沉积 Ni-W 纳米晶镀层制备与显微硬度研究 [J]. 电镀与精饰 , 2019, 41(8): 20-24.
[15] 孙渊 . 基于能量法的材料弹塑性能力分析 [J]. 上海电机学院学报 , 2015, 18(1): 8-12.
[16] 刘美华 . 压痕硬度测试中的力学问题研究 [D]. 天津 : 天津大学 , 2007.
[17] 钱王欢 , 秦丰 , 缪小梅 . 超声辅助电铸钨丝 - 镍复合层的微观结构和抗拉强度 [J]. 电镀与涂饰 , 2016, 35(11): 551-555.
[18] Matsui I, Takigawa Y, Uesugi T, et al. Tensile properties of bulk nanocrystalline Ni and Ni-W fabricated by sulfamate bath[J]. Materials Science Forum, 2010(654-656): 1114-1117.
备注/Memo
收稿日期: 2021-06-20 修回日期: 2021-12-06 作者简介: 林立( 1981 -),男,硕士,讲师,主要研究方向:机械工程材料、力学、特种加工技术等, email : KFDXLL0000@126.com