YANG Fan,WU Yunwen,GAO Liming,et al.Surface Treatment for 3D Packaging Sidewall Interconnect[J].Plating & Finishing,2022,(9):1-8.[doi:10.3969/j.issn.1001-3849.2022.09.001]
3D电子封装侧壁布线的互连界面处理工艺研究
- Title:
- Surface Treatment for 3D Packaging Sidewall Interconnect
- 分类号:
- TN305.2
- 文献标志码:
- A
- 摘要:
- 与传统封装形式相比, 3D 电子封装可实现更高密度集成,大幅缩小尺寸。以侧壁布线为互连方式的 3D 封装结构更加紧凑,与现有工艺兼容性好,具有广泛的应用前景。本研究针对该工艺缺乏合适的侧壁处理手段导致互连界面电阻偏高的问题,探讨了离子轰击等物理方法对侧壁互连界面处理的工艺,实现了低接触电阻侧壁互连。同时,借助高分辨透射电镜、小角度 X 射线衍射及纳米束电子衍射等分析手段对侧壁互连界面层进行了解析。结果表明,处理后界面氧化膜中氧原子含量大幅降低,并密集分布着被还原的金属铜晶粒,证明了即使氧离子轰击也可使氧化膜中的铜离子被还原为金属铜,从而揭示了离子轰击降低互连界面接触电阻的内在机制。
- Abstract:
- : Comparing to traditional packaging technology , 3D packaging can achieve higher integration density and thus reduce device size. 3D stacking with sidewall interconnect is a promising approach. It has compact structure and good integration with standard technologies. But it lacks a suitable cleaning process for sidewall surfaces , which leads to the problem of high interconnection interface resistance. To address this issue , this study develops an ion bombardment treatment for sidewall interconnects. The treatment resulted in minimal contact resistance. The contact interface was characterized through transmission microscope , glancing angle X-ray diffraction and nano-beam electron diffraction. The results showed that oxygen atomic fraction in the interface was reduced and metallic Cu grains densely distributed inside the oxide layer after the treatment. The results suggest that Cu oxides were reduced during the treatment and the reduction mechanism works even when the working gas being oxygen. This study reveals the key mechanism for ion bombardment lowering contact resistance.
参考文献/References:
[1] 周梓博 , 翟强 . 微电子 3D 封装技术发展 [J]. 电子世界 , 2021(17): 25-26.
[2] Ohara Y, Lee K W, Kiyoyama K, et al. Chip-based hetero-integration technology for high-performance 3D stacked image sensor[C] //2012 2nd IEEE CPMT Symposium, Japan: IEEE, 2012: 1-4.
[3] Qin I, Yauw O, Schulze G, et al. Advances in wire bonding technology for 3D die stacking and fan out wafer level package[C] //2017 IEEE 67th Electronic Components and Technology Conference (ECTC). USA: IEEE, 2017: 1309-1315.
[4] Ding Z, Bin L, Yong S, et al. Interconnect structure fabricated using lithographic and deposition process: USA, US20210057326A1[P]. 2021.
[5] Vincent M B, Hayes S M. Microelectronic packages having embedded sidewall substrates and methods for the producing thereof: USA, US9761565B2[P]. 2017.
[6] Mitul Modi, Digvijay A. Raorane, Die sidewall interconnects for 3D chip assemblies: USA, US010199354B2[P]. 2019.
[7] Fukushima T, Noriki A, Bea J, et al. 3-D sidewall interconnect formation climbing over self-assembled KGDs for large-area heterogeneous integration[J]. IEEE Transactions on Electron Devices, 2017, 64(7): 2912-2918.
[8] Al-sarawi S F, Abbott D, Franzon P D. A review of 3-D packaging technology[J]. IEEE Transactions on Components Packaging and Manufacturing Technology Part B, 1998, 21(1): 2-14.
[9] Minahan J A, Pepe A, Some R, et al. The 3D stack in short form (memory chip packaging)[C] //1992 Proceedings 42nd Electronic Components & Technology Conference. USA: IEEE, 1992: 340-344.
[10] Hornback W B, Kaufman C S. Advanced visible/infrared microcameras for dual-use applications[C] //Andresen B F, Fulop G F, Strojnik M. Infrared Technology and Applications XXVI. USA: SPIE, 2000: 621-628.
[11] Jonathan Michael Stern. Method for creating neo-wafers from singulated integrated circuit die and a device made according to the method: USA, US2004/0140533 A1[P]. 2004.
[12] Kim S R, Park A Y, Yoo C D, et al. An efficient edge traces technique for 3D interconnection of stack chip[C] //2011 IEEE 61st Electronic Components and Technology Conference (ECTC). USA: IEEE, 2011: 1878-1882.
[13] Lee J H, Yoo C D, Song J Y, et al. A study on the edge traces technique for 3D stack chip[C] //2011 IEEE International 3D Systems Integration Conference (3DIC). USA: IEEE, 2012: 1-4.
[14] Sachsenkam A S, Regensburg D S. Chip package with sidewall metallization: USA, US10593615 B2[P]. 2020.
[15] Pedersen D V, Finley M G, Sautter K M. Vertical interconnect process for silicon segment: USA, US6188126 B1[P]. 2001.
[16] Kim S R, Lee J H, Lee S S. Novel sidewall interconnection using a perpendicular circuit die for 3-D chip stacking[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, IEEE, 20155(9): 1265-1272.
[17] Kim H, Duocastella M, Charipar K M, et al. Laser printing of conformal and multi-level 3D interconnects[J]. Applied Physics A, 2013, 113(1): 5-8.
[18] Eberhardt W, Ahrendt D, Ke?ler U, et al. Polymer based multifunctional 3D-packages for microsystems[C]// 4M 2006 - Second International Conference on Multi-Material Micro Manufacture. Elsevier, 2006: 67-70.
[19] Ji C H, Herrault F, Allen M G. Sidewall lithography of micron-sized features in high-aspect-ratio meso-scale channels using a three-dimensional assembled mask[J]. Micro and Nano Systems Letters, 2014, 2(1): 6.
[20] Gattinoni C, Michaelides A. Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides[J]. Surface Science Reports, 2015, 70(3): 424-447.
[21] Valladares L D L S, Salinas D H, Dominguez A B, et al. Crystallization and electrical resistivity of Cu 2 O and CuO obtained by thermal oxidation of Cu thin films on SiO 2 /Si substrates[J]. Thin Solid Films, 2012, 520(20): 6368-6374.
[22] Abdu Y, Musa A. Copper (I) oxide (Cu 2 O) based solar cells-a review[J]. Bayero Journal of Pure and Applied Sciences, 2011, 2(2): 8-12.
[23] Assimos J A, Trivich D. Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu 2 O-Cu contacts[J]. Journal of Applied Physics, 1973, 44(4): 1687-1693.
[24] Wang Z, Zhao Y, Cui L, et al. CO 2 reforming of methane over argon plasma reduced Rh/Al 2 O 3 catalyst: a case study of alternative catalyst reduction via non-hydrogen plasmas[J]. Green Chemistry, 2007, 9(6): 554.
[25] 李晓莉 , 谢方艳 , 龚力 , 等 . 氩离子刻蚀还原氧化铜的 XPS 研究 [J]. 分析测试学报 , 2013, 32(5): 535-540.
[26] Sakai Y, Ninomiya S, Hiraoka K. XPS depth analysis of CuO by electrospray droplet impact[J]. Surface and Interface Analysis, 2012, 44(8): 938-941.
[27] Bouroushian M, Kosanovic T. Characterization of thin films by low incidence X-Ray diffraction[J]. Crystal Structure Theory and Applications, 2012, 1(3): 35-39.
备注/Memo
收稿日期: 2021-12-16 修回日期: 2022-01-19 作者简介: 杨繁( 1990 ―),男,硕士研究生, email : Yangfan88576638@sjtu.edu.cn * 通信作者: 李明, email : mingli90@sjtu.edu.cn ;张文龙, email : zhangwl@sjtu.edu.cn 基金项目: 国家自然科学基金( 61774105 )