Ma Lu,Zhang Peng,Xiao Ling*,et al.Treatment of complex heavy metal wastewater by ultrasonic/ultraviolet nano-Fe 0 Fenton-like process[J].Plating & Finishing,2023,(4):57-63.[doi:10.3969/j.issn.1001-3849.2023.04.010]
超声波/紫外光-纳米Fe0类芬顿法处理络合态重金属废水
- Title:
- Treatment of complex heavy metal wastewater by ultrasonic/ultraviolet nano-Fe 0 Fenton-like process
- Keywords:
- complex ; heavy metal wastewater ; ultraviolet ; ultrasonic ; nano-Fe 0 ; chemical oxygen demand COD
- 分类号:
- X703.1
- 文献标志码:
- A
- 摘要:
- 研究了超声波 / 紫外光( US/UV ) - 纳米 Fe 0 类芬顿法处理高浓度络合态重金属废水的适宜条件,探究该方法对化学需氧量( COD )和络合态重金属的去除机理。 实验结果表明:在 US/UV 作用下,纳米 Fe 0 类芬顿法处理 COD 浓度 1738.86 mg/L 、总铬 473.14 mg/L 、总镍 43.35 mg/L 、总铜 8.53 mg/L 的络合态重金属废水,在 pH 值为 3 、温度为 65 ℃ 、振荡速度 150 r/min 时,纳米 Fe 0 最佳用量为 9.6 g/L 、 H 2 O 2 投加量为 1 mL/L ,反应 20 min 后, COD 、总铬、总镍和总铜的去除率分别为 96.75% 、 99.99% 、 99.94% 和 99.57% 。相较于传统芬顿法,该方法加快反应速率,反应时间缩短了 66.6% ,去除效果提高 10% ,且污泥量减少 13% 。纳米 Fe 0 重复利用 3 次后,对络合态重金属的去除率仍在 50% 以上,可见纳米 Fe 0 重复利用性好。因此,纳米 Fe 0 在处理高浓度络合态重金属废水方面具有良好的应用前景。
- Abstract:
- : The suitable conditions of ultrasonic/ultraviolet ( US/UV ) nano-Fe 0 Fenton-like process for the treatment of high-concentration complex heavy metal wastewater were studied , and the removal mechanism of chemical oxygen demand ( COD ) and complex heavy metals by this process was explored. The experimental results show that under the action of US/UV , nano-Fe 0 Fenton-like process can treat the complex heavy metal wastewater with COD concentration of 1738.86 mg/L , total chromium of 473.14 mg/L , total nickel of 43.35 mg/L and total copper of 8.53 mg/L. When the pH value is 3 , the temperature is 65 ℃ and the oscillation speed is 150 r/min , the optimum condition of nano-Fe 0 is 9.6 mg/L. After reaction for 20 min with 1 mL/L of H 2 O 2 , the removal rates of COD , total chromium , total nickel and total copper were 96.75% , 99.99% , 99.94% and 99.57% respectively . Compared with the traditional Fenton method , the reaction rate was speeded up , the reaction time was shortened by 66.6% , the removal efficiency was improved by 10% , and the sludge amount was reduced by 13%. After repeated use of nano-Fe 0 for three times , the removal rate of complex heavy metals is still above 50% , which shows that nano-Fe 0 has good reusability. Therefore , nano-Fe 0 has a good application pros pect in the treatment of high-concentration complex heavy metal wastewater.
参考文献/References:
[1] 刘喜梅 . 沉淀 / 吸附法在电镀废水重金属处理中的应用 [J]. 农业灾害研究 , 2022, 12(2): 146-148.
[2] 蒋涛 . 电解法处理含镍废水及回收镍的实验研究 [D]. 重庆 : 重庆工商大学 , 2022.
[3] 耿继光 . 重金属脱络螯合剂的制备与性能研究 [D]. 西安 : 西安工程大学 , 2021.
[4] 徐小凤 . 络合镍废水的芬顿 - 臭氧氧化及电氧化破络技术研究 [D]. 衡阳 : 南华大学 , 2021.
[5] Lee C G, Song M K, Ryu J C, et al. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent[J]. Chemosphere, 2016, 153: 1-9.
[6] 崔丽娜 . 化学镀铜镍废水的处理研究 [D]. 青岛 : 青岛理工大学 , 2019.
[7] 夏俊方 , 方小琴 , 胡君杰 . UV/ 过硫酸钾 - 沉淀工艺深度处理含镍电镀废水 [J]. 工业用水与废水 , 2018, 49(2): 19-23.
[8] Zhang Y, Lin S, Qiao J, et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr (VI) and Cu (II) from aqueous solution[J]. Chemical Engineering Journal, 2018, 353: 225-236.
[9] 邹亚辰 , 李春琴 , 张庆芳 , 等 . 高级氧化法处理含络合态重金属废水研究进展 [J]. 应用化工 , 2022, 51(7): 2064-2068, 2073.
[10] 马忠贺 , 王竹梅 , 贾明 . 芬顿处理低浓度络合态镍铬 (Cr 6+ ) 铜混合电镀废水的小试研究 [J]. 当代化工研究 , 2018(11): 26-27.
[11] Mu Y, Ai Z, Zhang L. Phosphate shifted oxygen reduction pathway on Fe@ Fe 2 O 3 core-shell nanowires for enhanced reactive oxygen species generation and aerobic 4-chlorophenol degradation[J]. Environmental Science & Technology, 2017, 51(14): 8101-8109.
[12] Sun Y, Li J, Huang T, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review[J]. Water Research, 2016, 100: 277-295.
[13] Fu F, Xie L, Tang B, et al. Application of a novel strategy-Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater[J]. Chemical Engineering Journal, 2012, 189: 283-287.
[14] 刘晓龙 , 张宏 . 纳米零价铁在污水处理中的应用及研究进展 [J]. 化工管理 , 2018(4): 90-91.
[15] Jiraroj D, Unob F, Hagege A. Degradation of Pb-EDTA complex by a H 2 O 2 /UV process[J]. Water Research, 2006, 40(1): 107-112.
[16] 中国石油和化学工业协会 . 无机化工产品 火焰原子吸收光谱法通则 : GB /T 23768 - 2009[S]. 北京 : 中国国家标准化管理委员会 , 2009.
[17] 中国石油和化学工业联合会 . 再生水中化学需氧量的测定 重铬酸钾法 : GB /T 22597 - 2014[S]. 北京 : 中国国家标准化管理委员会 , 2014.
[18] 邹亚辰 , 贾小宁 , 冉浪 , 等 . 零价铁类芬顿法处理含低浓度重金属离子有机废水 [J]. 化学反应工程与工艺 , 2021, 37(2):167-174.
[19] 国家环境保护局 . 污水综合排放标准 : GB /T 8979 - 1996[S]. 北京 : 国家环境保护局科技标准司 , 1996.
备注/Memo
收稿日期: 2022-12-26 修回日期: 2023-02-17 作者简介: 马露( 1995 —),女,硕士, email : 466909848@qq.com * 通信作者: 肖棱, email : 472570531@ qq.com 基金项目: 绵阳师范学院研究生创新实践基金资助?/html>