PDF下载 分享
[1]丁序海,候吉浩,魏乾柱,等.电沉积纳米墙仿生结构涂层及其海水防腐防污研究[J].电镀与精饰,2023,(7):33-42.[doi:10.3969/j.issn.1001-3849.2023.07.005]
 Ding Xuhai,Hou Jihao,Wei Qianzhu,et al.Biomimetic coating based on electrodeposited nanowall structure and its anti-corrosion and anti-biofouling in seawater[J].Plating & Finishing,2023,(7):33-42.[doi:10.3969/j.issn.1001-3849.2023.07.005]
点击复制

电沉积纳米墙仿生结构涂层及其海水防腐防污研究

参考文献/References:



[1] Dwivedi A, Bharti P, Shukla S K. An overview of the polymeric materials that can be used to prevent metal corrosion: A review[J]. Journal of the Turkish Chemical Society Section A: Chemistry, 2021, 8(3): 863-872.

[2] 王曦 . 金属材料的腐蚀与防护方法分析 [J]. 世界有色金属 , 2021(15): 217-218.

[3] Carchen A, Atlar M, Turkmen S, et al. Ship performance monitoring dedicated to biofouling analysis: Development on a small size research catamaran[J]. Applied Ocean Research, 2019, 89: 224-236.

[4] 李辉 , 付磊 , 林莉 , 等 . 金属材料的腐蚀疲劳研究进展 [J]. 热加工工艺 , 2021, 50(6): 7-12.

[5] 苏华光 . 导体铜及铜合金的应用和加工工艺综述 [J]. 电线电缆 , 2022(5): 22-29.

[6] 粟志伟 , 周艳文 , 郭诚 , 等 . 冷喷涂 Cu(Ag) 涂层对 TB10 钛合金的生物污损防护 [J]. 材料保护 , 2022, 55(9): 1-9.

[7] Shinato K W, Zewde A A, Jin Y. Corrosion protection of copper and copper alloys in different corrosive medium using environmentally friendly corrosion inhibitors[J]. Corrosion Reviews, 2020, 38(2): 101-109.

[8] Lv Y, Liu M. Corrosion and fouling behaviours of copper-based superhydrophobic coating[J]. Surface Engineering, 2019, 35(6): 542-549.

[9] 柯冲 , 李中发 , 朱志平 , 等 . 超疏水涂层的制备及其在金属防腐领域的应用研究进展 [J]. 材料保护 , 2022, 55(2): 145-159.

[10] Sabzi M, Dezfuli S M. Deposition of Al 2 O 3 ceramic film on copper-based heterostructured coatings by aluminizing process: Study of the electrochemical responses and corrosion mechanism of the coating[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 90-95.

[11] Deng Y, Song G. Zheng D,et al. Fabrication and synergistic antibacterial and antifouling effect of an organic/inorganic hybrid coating embedded with nanocomposite Ag@TA-SiO2 particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126085.

[12] Khan M Z, Militky J, Petru M, et al. Recent advances in superhydrophobic surfaces for practical applications: A review[J]. European Polymer Journal, 2022, 111481.

[13] Liu X, Wang P, Zhang D, et al. Atmospheric corrosion protection performance and mechanism of superhydrophobic surface based on coalescence-induced droplet self-jumping behavior[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25438-25450.

[14] 李永富 , 张永君 , 沈先龙 , 等 . 铝合金超疏水涂层浸涂法制备及其耐蚀性能 [J]. 材料保护 , 2022, 55(11): 44-49+55.

[15] Zhang G, Shi Y, Tong B, et al. Exudation behavior and pinning effect of the droplet on slippery liquid-infused porous surfaces(SLIPS)[J]. Surface and Coatings Technology, 2022, 433: 128062.

[16] Xie M, Zhao W, Wu Y. Preventing algae biofilm formation via designing long-term oil storage surfaces for excellent antifouling performance[J]. Applied Surface Science, 2021, 554: 149612.

[17] Zhang M, Yu J, Chen R, et al. Highly transparent and robust slippery lubricant-infused porous surfaces with a nti-icing and anti-fouling performances[J]. Journal of Alloys and Compounds, 2019, 803: 51-60.

[18] Ouyang Y, Zhao J, Qiu R, et al. Liquid-infused superhydrophobic dendritic silver matrix: A bio-inspired strategy to prohibit biofouling on titanium[J]. Surface and Coatings Technology, 2019, 367: 148-155.

[19] Kan Y, Liu H, Yang Y, et al. Two birds with one stone: The route from waste printed circuit board electronic trash to multifunctional biomimetic slippery liquid-infused coating[J]. Journal of Industrial and Engineering Chemistry, 2022, 114: 233-241.

[20] Tang Y, Yang X, Li Y, et al. Robust micro-nanostructured superhydrophobic surfaces for long-term dropwise condensation [J]. Nano Letters, 2021, 21(22): 9824-9833.

[21] Wei L, Kang Z. Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surface and Coatings Technology, 2014, 253(9): 205-213.

[22] Chaudhury M K, Finlay J A, Chung J Y, et al. The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly (dimethylsiloxane) (PDMS) model networks[J]. Biofouling, 2005, 21(1): 41-48.

相似文献/References:

[1]张道权*,朱嫣红,傅春燕,等. 紫铜工艺品表面氧化棕色工艺的改进 [J].电镀与精饰,2022,(10):65.[doi:10.3969/j.issn.1001-3849.2022.10.011]
 ZHANG Daoquan*,ZHU Yanhong,FU Chunyan,et al.Modification of Oxidized Brown Technology on Red Copper Crafts Surface[J].Plating & Finishing,2022,(7):65.[doi:10.3969/j.issn.1001-3849.2022.10.011]
[2]高 虹*,李学田.一种结构仿生防污涂料的制备[J].电镀与精饰,2024,(7):32.[doi:10.3969/j.issn.1001-3849.2024.07.005]
 Gao Hong*,Li Xuetian.Preparation of a structural bionic antifouling coating[J].Plating & Finishing,2024,(7):32.[doi:10.3969/j.issn.1001-3849.2024.07.005]

备注/Memo

收稿日期: 2023-01-16 修回日期: 2023-02-23 作者简介: 丁序海( 1972 —)男,高级工程师,从事恶劣环境中材料的腐蚀防护研究工作, email : 17150262@ceic.com * 通信作者: 于溢禛, email : cyszyyz@163.com 基金项目: 国家自然科学基金资助项目( 52074172 )

更新日期/Last Update: 2023-07-01