Zhang Minmin,Lyu Guanren,Meng Xianben,et al.Research status and prospects of multi-element penetration technology for steel surface?/html>[J].Plating & Finishing,2023,(8):52-58.[doi:10.3969/j.issn.1001-3849.2023.08.009]
钢表面多元共渗技术的研究现状及展望
- Title:
- Research status and prospects of multi-element penetration technology for steel surface?/html>
- Keywords:
- multi-element penetration ; steel ; element of penetration ; accelerant agent
- 分类号:
- TQ156.8
- 文献标志码:
- A
- 摘要:
- 多元共渗技术是一种有效提高钢表面性能的方法,具有适应性高、可控性好、渗层多样性的优点。该技术可获得具有高耐腐蚀性、高耐磨性、高强度等性能的渗层。本文概述了目前多元共渗工艺的研究现状,简述了渗入元素的研究趋势,进一步分析了催渗剂的发展现状,并对多元共渗技术的发展提出了建议。
- Abstract:
- : Multi-element penetration technology is an effective surface modification method to improve the surface properties of steel , which has the advantages of good adaptability , controllability and various permeating layers. Multi-element penetration technology can obtain permeating layers with high corrosion resistant , high wear resistant , high strength and other properties. In this paper , the research status of the multi-element penetration technology was summarized , the research trend of the element of penetration was stated , the development status of the accelerant agent was further analyzed , and the development direction of the multi-element penetration was proposed.
参考文献/References:
[1] Elabbasy H M, Gadow H S. Study the effect of expired tenoxicam on the inhibition of carbon steel corrosion in asolution of hydrochloricacid[J]. Journal of Molecular Liquids, 2021(321): 114-118.
[2] Kubzová M, Kiv V, Urban V, et al. Corrosive environment factors and their influence on the development of weathering steel corrosion products[J]. Key Engineering Materials, 2020(832): 137-146.
[3] Wang X D, Zhong N, Hsu T. Novel ultrahing-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. Journal of Materials Research, 2009, 24(1): 260-267.
[4] Dima A, Bhaska R L S, Becke E R C, et al. Informatics infrastructure for the materials genome initiative[J]. JOM: The Journal of the Minerals, Metals & Materials Society, 2016, 68(8): 2053-2064.
[5] 牛艳娥 , 赵芃沛 , 李宁 , 等 . 国内外超高强度钢的研究现状及应用 [J]. 兵器装备工程学报 , 2021, 42(7): 274-279.
[6] Gao W, Crowther D, Francis A J, et al. Microstruc-ture and mechanical properties of laser welded S960 high strength steel[J]. Materials & Design, 2015(85): 534-548.
[7] 张新 , 蔡文河 , 杜双明 , 等 . Snicro 耐热钢的研究现状及应用前景 [J]. 机械工程学报 , 2019, 43(1): 1-7.
[8] Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO 2 as relevant to the corrosion of carbon capture and storage pipelines [J]. International Journal of Greenhouse Gas Control, 2013, 17: 534-543.
[9] 郑凯锋 , 张宇 , 衡俊霖 , 等 . 国内外耐候钢腐蚀疲劳试验技术发展 [J]. 哈尔滨工业大学学报 , 2021, 53(3): 1-10.
[10] 姜军 , 王军阳 , 金武俊 , 等 . 带肋钢腐蚀及其防腐蚀技术研究进展 [J]. 中国腐蚀与防护学报 , 2021, 41(4): 339-449.
[11] Alphonas J, Mukherjee S, Raja V S. Study of plasma nitriding and nitrocarburising of AISI 430F stainless steel for high hardness and corrosion resistance[J]. Corrosion Engineering, Science and Technology, 2018, 53(31): 478-486.
[12] 胡松飞 , 高国庆 , 杨川 . Q235 钢气体多元共渗中性盐雾试验时间定量计算的讨论 [J]. 材料保护 , 2016, 49(3): 27-32.
[13] Michal K, Natalia M, Pop?awski M. Two-stage gas boriding of NISI1 in N 2 -H 2 -BCl 3 atmosphere [J]. Surface & Coatings Technology, 2014, 244(15): 78-86.
[14] 钟厉 , 杨再强 , 韩西 . 喷砂预处理与离子氮碳氧硫复合工艺 [J]. 金属热处理 , 2013, 38(2): 112-114.
[15] 王存山 , 韩立影 . 激光硬化和渗氮复合处理 38CrMoAl 钢组织与性能 [J]. 材料热处理学报 , 2014, 35(32): 216-220.
[16] 蒋小龙 . 50CrVA 钢亚温淬火和多元共渗复合工艺及组织性能探索 [D]. 成都 : 西南交通大学 , 2012.
[17] Wu D, Kahn H, Dalton J C, et al. Orientation dependence of nitrogen supersaturation in austenitic stainless steel during low-temperature gas-phase nitriding[J]. Acta Materialia, 2014, 79(41): 339-350.
[18] 章敬保 . Fe-N 化合物与复合处理层抗腐蚀机理及纽织性能研究 [D]. 成都 : 西南交通大学 , 2017.
[19] Li X, Zhao Z F, Shan D D, et al. Effect of pulse frequency on solid boronizing process of Cr12MoV steel[J]. Heat treatment of metals, 2018, 43(4): 208-212.
[20] Aneta B, Aleksandra P, Poplawskia M, etal. Effect of laser modification of B-Ni complex layer on wear resistance and microhardness[J]. Optics & Laser Technology, 2015, 72: 116-124.
[21] Wang B, Xue W B, Wu Z L. Influence of discharge time on properties of plasma electrolytic borocarburized layers on Q235 low-carbon steel[J]. Materials Chemistry and Physics, 2015, 168: 10-17.
[22] 熊成 . 镍对渗硼层组织和性能的影响 [D]. 广州 : 华南理工大学 , 2018.
[23] 谢瑞珍 , 周宏伟 , 邹娇娟 , 等 . 双辉等离子表面合金化改善钢铁耐蚀和耐磨性的研究现状 [J]. 腐蚀与防护 , 2015, 36(12): 1174-1179.
[24] 陈腾飞 . Al-Y-Si 氧化物涂层与 Al 2 O 3 -SiO 2 复合涂层的双辉技术制备与性能研究 [D]. 南京 : 南京航空航天大学 , 2015.
[25] 缪斌 , 刘晗 , 范琪 , 等 . 42CrMo 钢离子氮碳氧多元共渗及动力学分析 [J]. 材料热处理学报 , 2016, 37(8): 184-188.
[26] Wan Y, Xiong D S, Li J L. Cooperative effect of surface alloying and laser texturing on tribological performance of lubricated surface [J]. Journal Central South University Technology, 2010(5): 906-910.
[27] 张鹏飞 . 不同表面处理工艺对高强螺栓钢组织及性能的影响 [D]. 成都 : 西南交通大学 , 2014.
[28] 吴宏观 , 蔡航伟 , 马志康 , 等 . 钨钼钇共渗强化层回火硬度及红硬性 [J]. 中国表面工程 , 2012, 25(2): 63-68.
[29] 郑铖武 , 王泽力 , 王大政 , 等 . 碳钢表面喷丸诱导低温 B-Cr-Re 共渗研究 [J]. 表面技术 , 2020, 49(5): 293-298.
[30] Zhang L Y, Peng C T, Guan J T, Lv P, et al. Nanocrystalline Cr-Ni alloying layer induced by high-current pulsed electron beam[J]. Nanomaterias, 2019(9), 74-78.
[31] Zhang C, Peng L, Jie C, et al. Enhanced corrosion property of W-Al coatings fabricated on aluminim using surface alloying under high-current pulsed electron beam[J]. Journal of Alloys & Compounds, 2017(723): 258-265.
[32] 张凌燕 . 钛基 / 镍基材料脉冲电子束表面合金化及强化机制研究 [J]. 南京 : 南京理工大学 , 2019.
[33] Kulka M, Makuch N, Piasecki A. Nanomechanical characterization and fracture toughness of FeB and Fe 2 B iron borides produced by gas boriding of Armco iron [J]. Surface & Coatings Technology. 2017, 325: 515-532.
[34] 徐重 . 等离子表面冶金技术的现状与发展 [J]. 中国工程科学 , 2002, 4(2): 36-41.
[35] 胡松飞 . 气体多元共渗层电化学腐蚀与盐雾腐蚀间定量关系研究 [D]. 成都 : 西南交通大学 , 2012.
[36] 樊新民 , 高洁 , 宋锦柱 , 等 . 铬和镍对中碳钢渗硼层组织和生长动力学的影响 [J]. 材料热处理学报 , 2014, 35(11): 190-194.
[37] 王小红 , 闫静 , 陈小时 , 等 . N80 钢表面碳、氮、氧、铬共渗层的组织及耐腐蚀性能 [J]. 机械工程材料 , 2010, 34(8): 54-56.
[38] 刘燕萍 . 双辉复合渗镀氮化钦陶瓷层及其等离子体特性的研究 [D]. 太原 : 太原理工大学 , 2006.
[39] Yan M. F. Effect of lanthanum rare earth addition on low temperature plasma nitriding[J]. International Heat Treatment and Surface Engineering, 2007, 1(3): 114-117.
[40] 黄双健 . 65Nb 基体钢 N-C-V-Mo-RE 多元共渗研究 [D]. 南宁 : 广西大学 , 2016.
[41] Gao Y , Wang C L , Li B , et al. Research on W-Mo-Y Multi-Elements Co-Diffusion Treatment and Plasma Nitriding[J]. Materials Science Forum, 2011, 704-705: 1146-1151.
[42] 高原 , 张维 , 李冰 , 等 . 稀土 ( 钇 ) 对钨钼原子扩散系数的影响 [J]. 稀有金属材料料 , 2012, 41(12): 2054-2156.
[43] 安峻岐 , 刘新继 , 何鹏 . 渗碳与碳氮共渗催渗技术的发展与现状 [J]. 金属热处理 , 2007, 32(5): 78-82.
[44] 李轩 , 郭喜平 . 催化剂 Nb-Ti-Si-Cr 基超高温合金表面 Si-Zr-Y 共渗层组织的影响 [J]. 金属学报 , 2012, 48(11): 1394-1402.
[45] 钟厉 , 王帅峰 , 门昕皓 , 等 . 38CrMoAl 钢钛催渗等离子氮化工艺研究 [J]. 表面技术 , 2021, 50(12): 159-166.
备注/Memo
收稿日期: 2022-09-10 修回日期: 2022-09-22 作者简介: 张敏敏( 1989 ―),男,硕士,工程师, email : 306942844@qq.com * 通信作者: 张琪, email : zhangqi_0211@163.com 基金项目: 中国铁路济南局集团有限公司科技研究开发计划( 2022G11 )