Yang Yue,Zhang Xiaorui,Wang Yang,et al.Sodium chloride solution and deep eutectic solvent for the electrolytic polishing of tungsten barbels[J].Plating & Finishing,2023,(9):1-5.[doi:10.3969/j.issn.1001-3849.2023.09.001]
氯化钠溶液与深度共晶溶剂用于对钨钩针的电解抛光
- Title:
- Sodium chloride solution and deep eutectic solvent for the electrolytic polishing of tungsten barbels
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 为提高钨钩针的使用寿命,采用电解抛光的方法对报废钨钩针进行再生处理。本文探究了氯化钠溶液与深度共晶溶剂对报废钨钩针的抛光效果并对再生钨钩针的耐腐蚀性能进行了测试。结果发现,使用氯化钠溶液抛光后表面光洁平整,而深度共晶溶剂抛光后表面会碳化变黑。增加电化学数据,如腐蚀电位等,发现两种抛光液抛光后的钨钩针耐腐蚀性均显著提高,氯化钠溶液的抛光后的耐腐蚀性能效果最好。氯化钠溶液可以有效代替传统电解溶液对钨钩针进行再生处理并且绿色无污染。
- Abstract:
- : To improve the service life of tungsten barb needles , end-of-life tungsten barb needles are regenerated by electrolytic polishing. This paper investigates the effect of sodium chloride solution and deep eutectic solvent on the polishing of end-of-life tungsten barbs and tests the corrosion resistance of the regenerated tungsten barbs. It was found that the surface was smooth and clean after polishing with the sodium chloride solution , while the surface was carbonized and blackened after polishing with the deep eutectic solvent. Adding electrochemical data , such as corrosion potential , it was found that the corrosion resistance of the tungsten crochet hooks after polishing with both polishing solutions was significantly improved , with the sodium chloride solution giving the best results in terms of corrosion resistance after polishing. The sodium chloride solution is an effective alternative to conventional electrolytic solutions for the regeneration of tungsten barbels and is green and non-polluting.
参考文献/References:
[1] Bachthaler M, Lenhart M, Paetzel C, et al. Corrosion of tungsten coils after peripheral vascular embolization therapy: Influence on outcome and tungsten load[J]. Catheterization and Cardiovascular Interventions, 2004, 62(3): 380-384.
[2] Diaz-Ballote L, Rejon V, Maldonado L, et al. Effect of dispersed oxide of cerium, lanthanum and thorium on the corrosion behaviour of tungsten in 3.5 wt.% NaCl solution[J]. Corrosion Engineering Science and Technology, 2023, 58(4): 423-430.
[3] Jiang Y, Yang J, Xie Z, et al. Enhanced erosion-corrosion resistance of tungsten by carburizing using spark plasma sintering technique[J]. Materials, 2020, 13(12): 2719.
[4] Ogundipe A, Greenberg B, Braida W, et al. Morphological characterisation and spectroscopic studies of the corrosion behaviour of tungsten heavy alloys[J]. Corrosion Science, 2006, 48(10): 3281-3297.
[5] Aponte I A, Esser B, Dickens J C, et al. Fundamental investigation of unipolar and RF corona in atmospheric air[J]. Physics of Plasmas, 2021, 28(12): 123502.
[6] Patrick E, Orazem M E, Sanchez J C, et al. Corrosion of tungsten microelectrodes used in neural recording applications[J]. Journal of Neuroscience Methods, 2011, 198(2): 158-171.
[7] Deng H, Huang R, Liu K, et al. Abrasive-free polishing of tungsten alloy using electrochemical etching[J]. Electrochemistry Communications, 2017, 82: 80-84.
[8] 宋萍 , 邢丕峰 , 谌家军 , 等 . 硫酸–甲醇体系钨电解抛光的可行性研究 [J]. 电镀与涂饰 , 2009, 28(3): 27-30.
[9] Han W, Fang F Z. Investigation of electropolishing characteristics of tungsten in eco-friendly sodium hydroxide aqueous solution[J]. Advances in Manufacturing, 2020, 8(3): 265-278.
[10] Han W, Fang F. Eco-friendly NaCl-based electrolyte for electropolishing 316L stainless steel[J]. Journal of Manufacturing Processes, 2020, 58: 1257-1269.
[11] Kityk A A, Danilov f I, Protsenko V S, et al. Electropolishing of two kinds of bronze in a deep eutectic solvent (Ethaline)[J]. Surface and Coatings Technology, 2020, 397: 126060.
[12] 汪敏 , 蔡兰坤 , 唐艺婧 , 等 . 带锈青铜表面超疏水薄膜的制备及防腐性能研究 [J]. 表面技术 , 2020, 49(11): 1001-3660.
[13] Kosec T, ?urkovi? H O, Legat A. Investigation of the corrosion protection of chemically and electrochemically formed patinas on recent bronze[J]. Electrochimica Acta, 2010, 56(2): 722-731.
[14] Du X Q, Liu Y W, Chen D C, et al. Co-electrodeposition of silane and graphene oxide on copper to enhance the corrosion protection performance[J]. Surface and Coatings Technology, 2022, 436: 128279.
[15] Arora S, KumarI N, Srivastava C. Microstructure and corrosion behaviour of NiCo-Carbon nanotube composite coatings[J]. Journal of Alloys and Compounds, 2019, 801: 449-459.
[16] Ganesan M, Liu C C, Pandiyarajan S, et al. Post-supercritical CO 2 electrodeposition approach for Ni-Cu alloy fabrication: An innovative eco-friendly strategy for high-performance corrosion resistance with durability[J]. Applied Surface Science, 2022, 577: 151955.
[17] Song J, He Y, Li H, et al. Preparation of pulse electrodeposited Ni-B/ZrC composite coatings and investigation of their mechanical properties and corrosion resistance[J]. Surface and Coatings Technology, 2022, 447: 128845.
[18] 刘雷 , 张粤 , 李霞 , 等 . 铝合金表面耐久性超疏水防护膜的制备与表征 [J]. 化工学报 , 2020, 71(10): 4750-4759.
[19] 陈琳 , 张刘叶 , 魏帆 , 等 . AZ31B 镁合金在硝酸镧复合电解液中的电化学行为 [J]. 轻合金加工技术 , 2017, 45(12): 47-52.
[20] Liu Y, Zhu Z, Cheng Y. An in-depth study of photocathodic protection of SS304 steel by electrodeposited layers of ZnO nanoparticles[J]. Surface and Coatings Technology, 2020, 399: 126158.
相似文献/References:
[1]柳小祥,范文俊,徐招,等.316L不锈钢金属双极板的电解抛光工艺[J].电镀与精饰,2020,(3):6.[doi:10.3969/j.issn.1001-3849.2020.03.002]
LIU Xiaoxiang,FAN Wenjun,XU Zhao,et al.Electro-polishing of 316L Stainless Steel Bipolar Plate[J].Plating & Finishing,2020,(9):6.[doi:10.3969/j.issn.1001-3849.2020.03.002]
[2]周赵琪,丁明玥,朱晴晴,等. 316L不锈钢电解抛光的MATLAB图像定量分析 [J].电镀与精饰,2024,(1):97.[doi:10.3969/j.issn.1001-3849.2024.01.015]
Zhou Zhaoqi,Ding Mingyue,Zhu Qingqing,et al.MATLAB image quantitative analysis for 316L stainless steel electrolytic polishing[J].Plating & Finishing,2024,(9):97.[doi:10.3969/j.issn.1001-3849.2024.01.015]
备注/Memo
收稿日期: 2023-07-07 修回日期: 2023-07-24 作者简介 : 杨玥( 1999 —),女,硕士,研究方向:电化学, email : 2710056186@qq.com * 通信作者: 梁山 ( 1980 —), email : liangshan@tust.edu.cn?/html>