Lu Kun*,Zhao Lijun.Research status and progress of NbN-based ceramic hard films[J].Plating & Finishing,2023,(9):55-63.[doi:10.3969/j.issn.1001-3849.2023.09.009]
NbN基陶瓷硬质薄膜研究现状与进展
- Title:
- Research status and progress of NbN-based ceramic hard films
- Keywords:
- NbN thin film ; microstructure ; mechanical properties ; friction and wear performance ; superhard effect
- 分类号:
- TG174
- 文献标志码:
- A
- 摘要:
- 主要综述了 NbN 单层膜、 NbN 基复合薄膜及多层薄膜的研究现状,详细叙述了 NbN 单层薄膜、 NbN 基复合薄膜和多层薄膜的微结构、力学性能、抗氧化性能、耐腐蚀性能和摩擦磨损性能,并重点阐述了 NbN 多晶结构、元素掺杂对 NbN 基复合薄膜的性能影响和多层膜的超硬效应机理。指出复合、多层陶瓷薄膜具有单一 NbN 薄膜无法实现的优点,复合、多层陶瓷膜将依然是未来 NbN 基陶瓷硬质薄膜的研究方向,最后对 NbN 基陶瓷硬质薄膜的发展和应用前景进行了展望。
- Abstract:
- : In this paper , the research progress of NbN-based single-layer film , composite film and multi-layer film is reviewed. The research status of NbN single-layer film is described in detail. The effects of multi-component composite film and multi-layer film design on the microstructure , mechanical properties , oxidation resistance , corrosion resistance and friction and wear properties of the film are described. The effects of element doping on the properties of composite films and the superhard effect mechanism of multi-layer films are emphatically described. It is pointed out that composite and multilayer ceramic films have the advantage that single NbN film cannot be realized. Composite and multilayer ceramic films will still be the research direction of NbN-based ceramic hard films in the future. Finally , the development and application prospects of NbN-based composite films are prospected.
参考文献/References:
[1] Wei X C, Roy P K, Yang Z H, et al. Ultrathin epitaxial NbN superconducting films with high upper critical field grown at low temperature[J]. Materials Research Letters, 2021, 9(8): 336-342.
[2] Licata O G, Sarker J, Bachhav M, et al. Correlation between thickness dependent nanoscale structural chemistry and superconducting properties of ultrathin epitaxial NbN films[J]. Materials Chemistry and Physics, 2022, 282: 125962.
[3] Kalal S, Gupta M, Rawat R. N concentration effects on structure and superconductivity of NbN thin films[J]. Journal of Alloys and Compounds, 2021, 851: 155925.
[4] Chen Z X, Dong P, Zhang Y W, et al. Compositional study of δ -NbN film by Auger electron microscopy[J]. Tungsten, 2023, 5(1): 130-135.
[5] Chen M H, Ding J C, Kwon S H, et al. Corrosion resistance and conductivity of NbN-coated 316L stainless steel bipolar plates for proton exchange membrane fuel cells[J]. Corrosion Science, 2021(prepublish): 110042.
[6] 朱雪彤 , 党淑娥 , 焦永星 , 等 . 固溶处理对 06Cr19Ni9NbN 钢微观组织与力学性能的影响 [J]. 金属热处理 , 2020, 45(11): 218-221.
[7] 韩玉蕊 , 杜安天 , 顾广瑞 . 磁控溅射 Ti 掺杂 NbN 薄膜的机械和摩擦学特性研究 [J]. 延边大学学报 ( 自然科学版 ), 2019, 45(3): 208-214.
[8] 高正远 , 黄乃宝 , 邵志刚 , 等 . PEMFC 钛双极板表面 NbN 改性研究 [J]. 电源技术 , 2019, 43(10): 1690-1693.
[9] Selinder T I, Sj?strand M E, Nordin M, et al. Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbide tools in stainless steel machining[J]. Surface & Coatings Technology, 1998, 105(1): 51-55.
[10] Hao J, Zhang K, Ren P, et al. Tuning the wettability, mechanical and tribological properties of NbN films by doping rare earth cerium[J]. Journal of Alloys and Compounds, 2020, 814(C): 152339.
[11] Ren P, Zhang K, Du S X, et al. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface[J]. Applied Surface Science, 2017, 407: 434-439.
[12] Chi P W, Su C W, Wei D H. Control of hydrophobic surface and wetting states in ultra-flat ZnO films by GLAD method[J]. Applied Surface Science, 2017, 404: 380-387.
[13] Zoharchen S, Avner S, Yosef Y. Current dependence of the negative magnetoresistance in superconducting NbN nanowires[J]. Scientific Reports, 2022, 12(1): 22027.
[14] Sharma M, Singh M, Rakshit R K, et al. Complex phase-fluctuation effects correlated with granularity in superconducting NbN nanofilms[J]. Nanomaterials, 2022, 12(23): 4109-4126.
[15] Shen H Y, Wang L. Characterization and properties of NbN-Nb bilayer formed on titanium for bipolar plates[J]. Materials Chemistry and Physics, 2022, 290: 126628.
[16] Wen M, Hu C Q, Meng Q N, et al. Effects of nitrogen flow rate on the preferred orientation and phase transition for niobium nitride films grown by direct current reactive magnetron sputtering[J]. Journal of Physics, D. Applied Physics: A Europhysics Journal, 2009, 42(3): 035304.
[17] Li Y G, Yuan H, Jiang Z T, et al. Phase composition and mechanical properties of homostructure NbN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J]. Surface & Coatings Technology, 2020, 385: 125387.
[18] Qi Z B, Wu Z T, Zhang D F, et al. Microstructure, mechanical properties and oxidation behaviors of magnetron sputtered NbN x coatings[J]. Journal of Alloys and Compounds, 2016, 675: 22-30.
[19] Singh K, Krishnamurthy N, Suri A K. Adhesion and wear studies of magnetron sputtered NbN films[J]. Tribology International, 2012, 50: 16-25.
[20] Mamun M A, Farha A H, Er A O, et al. Nanomechanical properties of NbN films prepared by pulsed laser deposition using nanoindendation[J]. Applied Surface Science, 2012, 258(10): 4308-4313.
[21] Cui X F,Cui H W, Guo T S, et al. Effects of Heat-treatment on Mechanical Properties and Corrosion Resistance of NbN Films[J]. Physics Procedia, 2013, 50: 433-437.
[22] 李永良 , 宋教花 , 张涛 . NbN 沉积膜的抗腐蚀特性研究 [J]. 真空科学与技术 , 2002(5) :79-82.
[23] 宋教花 , 张涛 , 侯君达 , 等 . 沉积温度对 NbN 膜层微观结构的影响 [J]. 北京师范大学学报 ( 自然科学版 ), 2001(1): 41-44.
[24] 张宏森 , 丁明惠 , 张丽丽 , 等 . 溅射方式对 NbN 薄膜结构及热稳定性的影响 [J]. 材料科学与工程学报 , 2010, 28(3): 458-462.
[25] Benkahoul M, Zayed M K, Sandu C S, et al. Structural, tribo-mechanical, and thermal properties of NbAlN coatings with various Al contents deposited by DC reactive magnetron sputtering[J]. Surface & Coatings Technology, 2017, 331: 172-178.
[26] Ju H B, Jia P, Xu J H, et al. Crystal structure and high temperature tribological behavior of niobium aluminum nitride films[J]. Materialia, 2018, 3: 202-211.
[27] Franz R, Lechthaler M, Polcik P, et al. Tribological properties of arc-evaporated NbAlN hard coatings[J]. Tribology Letters, 2012, 45: 143-152.
[28] Fonseca R M, Soares R B, Carvalho R G, et al. Castro. Corrosion behavior of magnetron sputtered NbN and Nb 1 - x Al x N coatings on AISI 316L stainless steel[J]. Surface & Coatings Technology, 2019, 378: 124987.
[29] 胡红霞 , 许俊华 , 喻利花 . V 含量对 (Nb,V)N 复合膜微结构、力学性能与摩擦性能的影响 [J]. 粉末冶金材料科学与工程 , 2014, 19(4): 635-640.
[30] Ren P, Si Y X, Wang G G, et al. Novel production techniques for solid solution Nb-Y-N films with improved tribological properties and hydrophobic behavior[J]. Vacuum, 2021, 194: 110621.
[31] Ezirmik K V, Rouhi S. Influence of Cu additions on the mechanical and wear properties of NbN coatings[J]. Surface & Coatings Technology, 2014, 260: 179-185.
[32] Ju H B, Ding N, Xu J H, et al. The tribological behavior of niobium nitride and silver composite films at elevated testing temperatures[J]. Materials Chemistry and Physics, 2019, 237: 121840.
[33] Li W, Liu P, Chen P C, et al. Microstructure and a coherent-interface strengthening mechanism of NbSiN nanocomposite film[J]. Thin Solid Films, 2017, 636: 1-7.
[34] Hultman L, Bareno J, Flink A, et al. Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations[J]. Physical Review B. Condensed Matter, 2007, 75(15): 1418-1428.
[35] Chen Y I, Gao Y X, Chang L C, et al. Mechanical properties, bonding characteristics, and oxidation behaviors of Nb-Si-N coatings[J]. Surface and Coatings Technology, 2018, 350: 831-840.
[36] Benkahoul M, Sandu C S, Tabet N, et al. Effect of Si incorporation on the properties of niobium nitride films deposited by DC reactive magnetron sputtering[J]. Surface & Coatings Technology, 2004, 188: 435-439.
[37] 喻利花 , 苑彩云 , 许俊华 . 磁控溅射 NbSiN 复合膜的微结构和性能 [J]. 材料工程 , 2013(7): 35-39.
[38] 武凡靖 . VCN-Cu,NbCN-Ag,NbBN 纳米复合膜的制备及其性能研究 [D]. 镇江 : 江苏科技大学 , 2018.
[39] 时永治 , 董磊 , 聂宇尧 , 等 . 基底偏压对 NbN-NbB2 纳米复合薄膜相变与力学性能的影响 [J]. 天津师范大学学报 ( 自然科学版 ), 2018, 38(3): 26-31.
[40] 苑彩云 . NbCN 、 NbSiN 复合膜和 NbSiN/VN 多层膜的微结构和性能研究 [D]. 镇江 : 江苏科技大学 , 2012.
[41] 涂高阳 . TC4 表面制备 NbCN 涂层的耐磨耐蚀性能的研究 [D]. 武汉 : 武汉工程大学 , 2019.
[42] Du H M, Liu P, Li W, et al. Effects of C/Si ratios on structures and behaviors of NbSiCN nanocomposite films synthesized by reactive magnetron sputtering[J]. Materials Characterization, 2020, 167: 110466.
[43] 喻利花 , 孙晨 , 许俊华 . Cu 含量对 NbCN-Cu 复合膜微结构、力学性能及摩擦磨损性能的影响 [J]. 真空科学与技术学报 , 2016, 36(04): 377-384.
[44] Bian S N, Yu L H, Jia P, et al. Study on microstructure, mechanical properties and corrosion resistance of NbCN-Cu composite films[J]. International Journal of Refractory Metals and Hard Materials, 2022, 107: 105885.
[45] 胡红霞 , 鞠洪博 , 许俊华 . 碳含量对 NbVCN 薄膜的微观结构、力学及摩擦磨损性能的影响 [J]. 真空科学与技术学报 , 2016, 36(1): 80-85.
[46] 江泉英 . NbAlSiN 涂层和 CrAlBN 涂层的结构和性能研究 [D]. 南昌 : 江西科技师范大学 , 2017.
[47] Wu F J, Yu L H, Ju H B, et al. Structural, mechanical and tribological properties of NbCN-Ag nanocomposite films deposited by reactive magnetron sputtering[J]. Coatings, 2018, 8(2): 50-64
[48] 李戈扬 , 赖倩茜 , 虞晓江 , 等 . TiN/NbN 纳米多层膜的微结构与超硬度效应 [J]. 上海交通大学学报 , 2002(5): 730-732.
[49] 赖倩茜 , 虞晓江 , 戴嘉维 , 等 . TiN/NbN 纳米多层薄膜的交变应力场和超硬效应 [J]. 真空科学与技术 , 2002(4): 74-77.
[50] Lu C, Meng F W, Liu H, et al. Influence of interfacial configuration on superhardness effect in TiN (111)/NbN (111) nano-multilayer film: A first-principles calculation[J]. Materials Today Communications, 2020, 24: 101238.
[51] Wen M, Huang H, Zhang K, et al. Effects of modulation periodicity on microstructure, mechanical and tribological properties of NbN/AlN nanostructured multilayer films[J]. Applied Surface Science, 2013, 284: 331-339.
[52] Wen M, Huang H, Zhang K, et al. The AlN layer thickness dependent coherent epitaxial growth, stress and hardness in NbN/AlN nanostructured multilayer films[J]. Surface & Coatings Technology, 2013, 235: 367-375.
[53] 喻利花 , 薛安俊 , 董松涛 , 等 . AlN/NbN 纳米结构多层膜的共格异结构外延生长研究 [J]. 物理学报 , 2010, 59(06): 4150-4155.
[54] Liu N, Dong L, Jin S X, et al. Significant impact of individual surface and modulation structure on mechanical properties of NbN/NbB 2 multilayers[J]. Journal of Alloys and Compounds, 2017, 695: 3225-3232.
[55] Purandare Y P, Robinson G L, Ehiasarian A P, et al. Investigation of high power impulse magnetron sputtering deposited nanoscale CrN/NbN multilayer coating for tribocorrosion resistance[J]. Wear, 2020, 452: 203312.
[56] Hovsepian P E, Ehiasarian A P, Purandare Y P, et al Performance of HIPIMS deposited CrN/NbN nanostructured coatings exposed to 650°C in pure steam environment[J]. Materials Chemistry and Physics, 2016, 179: 110-119.
[57] Wang T, Jin Y L, Bai L J, et al. Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering[J]. Journal of Alloys and Compounds, 2017, 729: 942-948.
[58] Zhang E G, Liu J J, Li W. Microstructures, mechanical and tribological properties of NbN/MoS 2 nanomultilayered films deposited by reactive magnetron sputtering[J]. Vacuum, 2019, 160: 205-209.
[59] Varghese V, Chakradhar D, Ramesh M R. Micro-mechanical characterization and wear performance of TiAlN/NbN PVD coated carbide inserts during End milling of AISI 304 Austenitic Stainless Steel[J]. Materials Today: Proceedings, 2018, 5(5): 12855 – 12862.
[60] Hovsepian P E ,Sugumaran A A, Rainforth M, et al. Microstructure and load bearing capacity of TiN/NbN superlattice coatings deposited on medical grade CoCrMo alloy by HIPIMS[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132: 105267.
[61] Sugumaran A A, Purandare Y, Shukla K, et al. TiN/NbN nanoscale multilayer coatings deposited by high power impulse magnetron sputtering to protect medical-grade CoCrMo alloys[J]. Coatings, 2021, 11(7): 867-878.
[62] Huang W, Zalnezhad E, Musharavati F, et al. Investigation of the tribological and biomechanical properties of CrAlTiN and CrN/NbN coatings on SST 304[J]. Ceramics International, 2017, 43(11): 7992-8003.
[63] Hovsepian P E, Ehiasarian A P, Purandare Y, et al. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering[J]. Journal of Materials Science: Materials in Medicine, 2016, 27(9): 147-155.
备注/Memo
收稿日期: 2023-03-13 修回日期: 2023-06-05 * 通信作者: 陆昆( 1986 —),男,硕士研究生,副教授, email : 250409485@qq.com 基金项目: 安徽省自然科学重点项目( KJ2020A1004 );安徽省 2022 年高校优秀青年骨干教师国内访学研修项目 ( gxgnfx2022159 )