Lan Lan,Wang Chong*,Wang Pengju,et al.Application research of new acid copper electroplating accelerator[J].Plating & Finishing,2023,(12):64-70.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.009]
新型酸铜电镀加速剂MA的应用研究
- Title:
- Application research of new acid copper electroplating accelerator
- Keywords:
- copper electroplating additives ; accelerator ; concentration analysis ; throwing power ; mer capto-propane-sulphonate complex
- 分类号:
- TQ153.14
- 文献标志码:
- A
- 摘要:
- 酸性电镀铜是重要的电子互连制造技术之一。为解决其工业生产过程中,聚二硫二丙烷磺酸钠( SPS )和 3- 巯基 -1- 丙烷磺酸钠( MPS )稳定性欠佳,导致镀液老化,使添加剂监控失效、镀液均镀能力下降和镀层结瘤等问题,通过电化学实验、定量分析实验和电镀实验,研究了巯基丙烷磺酸络二铜( MA )作为电子互连中酸铜电镀加速剂的特性。结果表明, MA 能够直接替代原配方中的 SPS 和 MPS ,作为酸铜加速剂使用,且工作浓度更低,具有更宽的 CVS 分析线性区间,能够提供更准确的定量分析结果,在微通孔保型电镀中表现出良好的均镀能力,并能实现微盲孔的超级填充,不改变铜镀层的金相织构等,展现出广阔的应用前景。
- Abstract:
- : Acid copper electroplating is the most essential technology for the interconnects production. In order to solve the problems of additive monitoring failure , throwing ability of plating solution decreases and coating nodulation while plating solution is aging in acid copper plating caused by the poor chemical stability of SPS and MPS , bi-Cu-mercapto-propane-sulphonate complex ( MA ) was invited as the accelerator. The accelerating properties and electroplating performance of MA were studied by electrochemical and electroplating experiments. The results show that MA can directly replace SPS and MPS in the original formula , and can be used as an acid copper accelerator with a lower working concentration , a wider linear range of CVS analysis , and more accurate quantitative analysis results. It shows good throwing ability in conformal electroplating , and can realize super filling of micro-blind vias without changing the metallographic texture of copper plating , showing broad application prospects.
参考文献/References:
[1] 叶成茁 , 丁运虎 , 徐九生 , 等 . 硫酸盐型滚镀厚铜研究 [J]. 材料保护 , 2021, 54(12): 111-114.
[2] 张志梁 , 张迎 . 钢铁基体无预镀直接强酸性镀铜工艺 [J]. 材料保护 , 2021, 54(7): 89-92.
[3] 高岩 , 王欣平 , 何金江 , 等 . 集成电路用磷铜阳极及相关问题研究 [J]. 中国集成电路 , 2011, 20(11): 64-69, 79.
[4] Bandas C D, Rooney R T, Kirbs A, et al. Interfacial leveler-accelerator interactions in Cu electrodeposition[J]. Journal of the Electrochemical Society, 2021, 168(4): 42501.
[5] Tan M, Harb J N. Additive behavior during copper electrodeposition in solutions containing Cl - , PEG and SPS[J]. Journal of the Electrochemical Society, 2003, 150(6): C420-C425.
[6] 杜荣斌 , 刘励昀 , 吴夏 , 等 . 添加剂 N, N -二乙基硫脲 , PEG, Cl - 对高抗拉电解铜箔电结晶行为的影响 [J]. 材料保护 , 2021, 54(4):7-14.
[7] 曾绍海 , 林宏 , 陈张发 , 等 . 55 nm 双大马士革结构中电镀铜添加剂的研究 [J]. 复旦学报 ( 自然科学版 ), 2018, 57(4): 504-508, 516.
[8] Akolkar R, Landau U. A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization[J]. Journal of the Electrochemical Society, 2004, 151(11): C702-C711.
[9] 窦维平 . 利用电镀铜填充微米盲孔与通孔之应用 [J]. 复旦学报 ( 自然科学版 ), 2012, 51(2): 131-138, 259-260.
[10] 彭佳 , 程骄 , 王翀 , 等 . PCB 电镀铜添加剂作用机理研究进展 [J]. 电镀与精饰 , 2016, 38(12): 15-22.
[11] 王赵云 , 金磊 , 杨家强 , 等 . 高密度互连印制电路板孔金属化研究和进展 [J]. 电化学 , 2021, 27(3): 316-331.
[12] 吴依彩 , 毛子杰 , 王翀 , 等 . 高端电子制造中电镀铜添加剂作用机制研究进展 [J]. 中国科学 : 化学 , 2021, 51(11): 1474-1488.
[13] 苏亚东 . 电沉积对铜晶粒生长的调控及其在电子互连中的应用 [D]. 成都 : 电子科技大学 , 2020.
[14] Dianat A, Yang H L, Bobeth M, et. al. DFT study of interaction of additives with Cu(111) surface relevant to Cu electrodeposition[J]. Journal of Applied Electrochemistry, 2018, 48(2): 211-219.
[15] Broekmann P, Fluegel A, Emnet C, et. al. Classification of suppressor additives based on synergistic and antagonistic ensemble effects[J]. Electrochimica Acta, 2011, 56(13): 4724-4734.
[16] Kondo K, Matsumoto T, Watanabe K. Role of additives for copper damascene electrodeposition experimental study on inhibition and acceleration effects[J]. Journal of the Electrochemical Society, 2004, 151(4): C250-C255.
[17] Cho S K, Kim H C, Kim M J, et. al. Voltammetric observation of transient catalytic behavior of SPS in copper electrodeposition-its interaction with cuprous ion from comproportionation[J]. Journal of the Electrochemical Society, 2016, 163(8): D428-D433.
[18] Garcia C E, Wong E H, Barkey D P. NMR spectral studies of interactions between the accelerants SPS and MPS and copper chlorides[J]. Journal of the Electrochemical Society, 2011, 158(3): D143-D148.
[19] Schmidt K G, Schmidt R, Gaida J, et. al. Chain length variation to probe the mechanism of accelerator additives in copper electrodeposition[J]. Physical Chemistry Chemical Physics, 2019, 21(30): 16838-16847.
[20] 王翀 , 兰岚 , 彭川 , 等 . 电镀铜加速剂及合成方法和应用 : CN, CN113956479B[P]. 2022-01-21
[21] Zheng L, He W, Zhu K, et. al. Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochimica Acta, 2018, 283: 560-567.
[22] 向静 . 封装基板互连结构电沉积铜机理与应用研究 [D]. 成都 : 电子科技大学 , 2018.
[23] 何为 . 印制电路与印制电子先进技术 ( 下 )[M]. 北京 : 科学出版社 , 2016.
[24] 孙世刚 . 电化学测量原理和方法 [M]. 厦门 : 厦门大学出版社 , 2021.
[25] 赖志强 . 高速电镀铜构建印制电路互连微孔的研究与应用高速电镀铜构建印制电路互连微孔的研究与应用 [D]. 成都 : 电子科技大学 , 2020.
[26] 朱凯 . 金属沉积构建电子元件电气互连结构的研究与应用 [D]. 成都 : 电子科技大学 , 2019.
[27] 王森林 , 洪亮亮 . 关于 XRD 计算镀层织构公式的辨析 [J]. 华侨大学学报 ( 自然科学版 ), 2008, 103(3): 476-478.
备注/Memo
收稿日期: 2023-02-22 修回日期: 2023-05-18 作者简介: 兰岚( 1998 -),女,硕士研究生, email : 2855965156@qq.com * 通信作者: 王翀( 1981 -),副教授, email : wangchong@uestc.edu.cn 基金项目: 国家自然科学基金面上项目( 22172020 )和专项项目( 22241201 ),珠海市创新创业团队项目( ZH0405190005PWC )及珠海市科技计划项目( ZH22044702190033HJL )?/html>