Sun Peng,Shen Xixun,*,et al.Research progress in hole metallization technology for printed circuit boards[J].Plating & Finishing,2023,(12):89-94.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.013]
印制线路板的孔金属化技术的研究进展
- Title:
- Research progress in hole metallization technology for printed circuit boards
- Keywords:
- printed circuit board ; hole metallization ; direct plating ; conductive polymers ; black hole process
- 分类号:
- TN41
- 文献标志码:
- A
- 摘要:
- 当前印制线路板的孔金属化主要通过化学镀铜工艺来实现。但其成分体系复杂,工艺操作繁琐,活化处理所需的贵金属成本高昂,而且其使用的还原剂甲醛具有致癌性。显然,这些不足已经无法满足印制线路板升级发展对表面处理的高要求。为此,本文分析了近些年环保型化学镀铜、钯胶体工艺、黑孔化工艺以及导电聚合物工艺等新型的金属化工艺的研究现状及存在的问题,并阐述了导电聚合物工艺的优越性和实用性。
- Abstract:
- : At present , the hole metallization of printed circuit boards is achieved through electroless copper plating process. However , this treatment process has a complex composition system and a cumbersome process and uses precious metals for activation and carcinogenic formaldehyde as a reducing agent. Obviously , these shortcomings are no longer to meet the high requirements for surface treatment in the upgrading and development of printed circuit boards. To this end , this article analyzes the research status and existing problems of new metallization processes such as environmentally friendly chemical copper plating , palladium colloid process , black hole process , and conductive polymer process in recent years , and elaborates on the advantages and practicality of conductive polymer process.
参考文献/References:
[1] 王赵云 , 金磊 , 杨家强 , 等 . 高密度互连印制电路板孔金属化研究和进展 [J]. 电化学 , 2021, 27(3): 316-331.
[2] 鄢豪 , 管英柱 . 非金属材料化学镀铜研究进展 [J]. 电镀与涂饰 , 2022, 41(11): 791-796.
[3] 石萍 , 李桂云 . 对印制板孔金属化直接电镀工艺的评价 [J]. 电镀与精饰 , 1999(6): 15-17.
[4] Ghosh S. Electroless copper deposition: A critical review[J]. Thin Solid Films, 2018, 669: 641-658.
[5] Radovsky D A, Ronkese B J. Method of electroplating on a dielectric base: US, 3099608[P]. 1963-7-30.
[6] Narcus H. Practical copper reduction on nonconductors[J]. Metal Finishing, 1947, 45(9): 64-67.
[7] 张建刚 . 环保型化学镀铜工艺研究 [D]. 济南 : 山东建筑大学 , 2014.
[8] Hung A. Electroless copper deposition with hypophosphite as reducing agent[J]. Plating and Surface Finishing, 1988: 62-64, 85.
[9] Karthikeyan S, Vasudevan T, Srinivasan K N, et al.Studies on formaldehyde-free electroless copper deposition[J]. Plating & Surface Finishing, 2002, 89(7): 54-56.
[10] Touir R, Larhzil H, EbnTouhami M, et al. Electroless deposition of copper in acidic solutions using hypophosphite reducing agent[J]. Journal of Applied Electrochemistry, 2006, 36(1): 69-75.
[11] 杨防祖 , 杨斌 , 陆彬彬 , 等 . 以次磷酸钠为还原剂化学镀铜的电化学研究 [J]. 物理化学学报 , 2006, 22(11): 1317-1320.
[12] Anik T, El H A, Ebn T M, et al. Influence of N-N dimethyl formamide on electroless copper plating using hypophosphite as reducing agent[J]. Surface & Coatings Technology, 2014, 245: 22-27.
[13] 申晓妮 , 路妍 , 任凤章 , 等 . 络合剂对次磷酸钠印制线路板化学镀铜的影响 [J]. 腐蚀科学与防护技术 , 2015, 27(3): 269-272.
[14] Nobari I N, Behboudnia M, Maleki R. Palladium-free electroless deposition of pure copper film on glass substrate using hydrazine as reducing agent[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2016, 385: 9-17.
[15] 李立清 , 冯罗 , 吴盼旺 , 等 . 新型次磷酸钠体系化学镀铜添加剂及其对镀液和镀层性能的影响 [J]. 表面技术 , 2020, 49(7): 329-337.
[16] Huang J H, Shih P S, Renganathan V, et al. Development of high copper concentration, low operating temperature, and environmentally friendly electroless copper plating using a copper-glycerin complex solution[J]. Electrochimica Acta, 2022, 425: 140710.
[17] Pai R S. The Phoenix[J]. PCB Information, 1991, 45(1): 83-85.
[18] Svetozar A, Slavka T, Nina S. Three methods for PCB via metallization-investigation and discussion[C]//2018 IX National Conference with International Participation (Electronica). Bulgaria: Institute of Electrical and Electronics Engineers, 2018: 1-3.
[19] Chou C S, Tu H C, Wang Y Y, et al. Method to accelerate Pd/Sn based direct plating process[J]. Electrochemical and Solid-State Letters, 2004, 7(10): C111-C114.
[20] 王桂香 , 李宁 , 黎德育 . 直接电镀用胶体钯催化剂的研制及性能 [J]. 稀有金属材料与工程 , 2006(10): 1656-1660.
[21] 陈亚 , 苗艺 . 高品质塑料电镀技术新进展 [J]. 电镀与环保 , 1999(3): 3-5.
[22] 遇世友 , 李宁 , 谢金平 . 以石墨为导电基质的黑孔化新技术 [J]. 印制电路信息 , 2012, 231(7): 40-43.
[23] Minten K L, Pismennaya G. Process for preparing a non-conductive substrate for electroplating: US06/802892[P]. 1986-10-28.
[24] Minten K L, Pismennaya G. Printed wiring board having carbon black-coated through holes: US, 19860858328[P]. 1987-08-04.
[25] Minten K L, Pismennaya G. Liquid carbon black dispersion: US, 19860858332[P]. 1988-02-09.
[26] 段远富 , 高四 , 张伟 , 等 . 纳米碳孔金属化直接电镀技术 [J]. 装备环境工程 , 2013, 10(1): 114-117.
[27] 遇世友 , 谢金平 , 李树泉 , 等 . 印刷电路板碳导电处理后直接电镀铜 [J]. 电镀与涂饰 , 2014, 33(17): 723-727.
[28] Yu S Y, Li N, Higgins D, et al. Self-assembled reduced graphene oxide/polyacrylamide conductive composite films[J]. ACS Applied Materials & Interfaces, 2015, 6(22): 19783-19790.
[29] 张正 , 李孝琼 , 高四 , 等 . 化学镀厚铜、有机导电膜、黑孔化工艺比较 [J]. 印制电路信息 , 2015, 23(4): 23-25.
[30] Hupe J, Kronenberg W. New Through-hole plated printed circuit board and process for manufacturing same: EP, 0402381[P]. 1994-09-07.
[31] 胡永栓 . 直接电镀 DMS-E 法应用 [J]. 印制电路信息 , 1999(4): 22-25.
[32] Hupe J, Sabin F. Process and device for producing through-connected printed circuit boards and multilayered printed circuit boards: AU, 19960067003[P]. 1997-02-26.
[33] 叶锦群 . 有机导电膜孔金属化新工艺应用 [J]. 印制电路信息 , 2014, 263(12): 61-64.
[34] Huang W S, Angelopoulos M, White J R, et al. Metallization of printed circuit boards using conducting polyaniline[J]. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 189(1): 227-235.
[35] Dohyeun L, Taeho L, Hana L, et al. Copper electrodeposition on polyimide substrate using polyaniline film as a seed layer for metallization of flexible devices[J]. International Journal of Electrochemical Science, 2018, 13(12): 11829-11838.
[36] Li J J, Zhou G Y, Hong Y, et al. Nickel-nanoparticles-assisted direct copper-electroplating on polythiophene conductive poly mers for PCB dielectric holes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 262-268.
[37] 李玖娟 , 陈苑明 , 朱凯 , 等 . 环氧树脂表面生成聚噻吩的研究及直接电镀应用 [J]. 电镀与精饰 , 2018, 40(5): 5-10.
[38] 肖亮 , 苏从严 , 高健 , 等 . 选择性有机导电涂覆工艺研究 [J]. 印制电路信息 , 2014(3): 43-45.
[39] 刘彬云 , 肖亮 , 苏从严 . SOC 制程在微盲孔填镀中的缺陷及改善 [J]. 印制电路信息 , 2017, 25(z1): 218-223.
[40] 欧明创有限公司 . 制备基于聚噻吩及其衍生物呈现增加传导性的涂层之方法 : CN, 200880123536.5[P]. 2011-01-19.
[41] 肖亮 , 苏从严 , 高健 , 等 . 选择性有机导电涂覆工艺研究 [J]. 印制电路信息 , 2014(3): 43-45.
备注/Memo
收稿日期: 2023-04-03 修回日期: 2023-06-01 作者简介: 孙鹏( 1998 —),男,硕士在读, email : 2691522644@qq.com * 通信作者: 沈喜训( 1977 —),男,博士,副教授, email : shenxixun@shiep.edu.cn 基金项目: 国家自然科学基金面上项目( 21972090 ),上海市科委项目( 19DZ2271100 ),中国科学院学部咨询评议项目( 2020-HX02-B-030 )