Wang Baichuan,Jia Haiwen.Study on high-speed water-based abrasive two-phase flow finishing of high-temperature alloy gas film holes Wang Bingkun1, Hao Juan 2*, Wu Dong1, Mi Tianjian 2, Jiao Xudong1,[J].Plating & Finishing,2024,(10):1-8.
高温合金气膜孔的高速水基磨粒两相流光整研究
- Title:
- Study on high-speed water-based abrasive two-phase flow finishing of high-temperature alloy gas film holes Wang Bingkun1, Hao Juan 2*, Wu Dong1, Mi Tianjian 2, Jiao Xudong1,
- Keywords:
- gas film hole; remelted layer; two-phase flow; surface roughness
- 分类号:
- TQ 43
- 文献标志码:
- A
- 摘要:
- 随着先进航空发动机对涡轮前燃气温度需求不断提升,气膜孔冷却作为涡轮叶片高效冷却的核心技术,对激光加工气膜孔的粗糙表面进行光整处理对于涡轮叶片的冷却性能和使用寿命具有重要意义,然而现有常见的磨粒流抛光、磨料水射流抛光、磁力抛光、化学抛光等光整方法均存在一定的局限性。研究基于新型高速水基磨粒两相流技术,通过调控磨抛压力、加工时间对激光加工的DD6镍基单晶高温合金叶片圆型气膜孔进行光整探索,采用金相显微镜、扫描电子显微镜、激光共聚焦扫描显微镜等表征手段对比分析磨抛前后气膜孔的端口孔型尺寸、内壁微观形貌及表面粗糙度。结果表明:磨抛压力是影响气膜孔尺寸精度与质量的第一核心因素,磨抛压力过小则磨抛效果不明显,磨抛压力过大则极易诱发微裂纹并向基体内部蔓延而最终导致片状剥离或崩口,使得气膜孔尺寸精度及内壁质量下降。当磨抛压力为6 MPa、磨抛时间为90 min时,气膜孔内壁重熔层已基本完全去除,孔径扩大尺寸为0.024 mm,圆度最佳、倒角最大为0.1 mm,表面粗糙度由原始孔4.85 μm显著降低至0.80 μm,尺寸精度控制与内壁质量提升均较为理想。
- Abstract:
- With the increasing demand for turbine gas temperature in advanced aero-engines, film hole cooling is the core technology for efficient cooling of turbine blades. The rough surface finishing of laser-processed film holes is of great significance for the cooling performance and service life of turbine blades. However, the existing common finishing methods such as abrasive flow polishing, water jet polishing, magnetic polishing, and chemical polishing have certain limitations. Based on the new high-speed water-based abrasive two-phase flow technology, the laser-processed circular film holes of DD6 nickel-based single crystal superalloy blade were explored by adjusting the grinding and polishing pressure and processing time. The port hole size, inner wall morphology and surface roughness of the film holes before and after grinding and polishing were compared and analyzed by means of metallographic microscope, scanning electron microscope, laser confocal scanning microscope and other characterization methods. The results show that the polishing pressure is the first core factor affecting the dimensional accuracy and quality of the gas film hole. If the polishing pressure is too small, the polishing effect is not obvious. If the polishing pressure is too large, it is easy to induce microcracks and spread to the interior of the matrix, which eventually leads to flake peeling or chipping, resulting in the decrease of the dimensional accuracy of the gas film hole and the quality of the inner wall. When the polishing pressure is 6 MPa and the polishing time is 90 min, the remelted layer on the inner wall of the gas film hole has been basically completely removed. The aperture expansion size is 0.024 mm, the roundness is the best, the chamfering is 0.1 mm, and the surface roughness is significantly reduced from the original hole 4.85 μm to 0.80 μm. The dimensional accuracy control and the inner wall quality improvement are ideal
参考文献/References:
[1].许庆彦, 夏鹄翔. 镍基高温合金叶片定向凝固过程宏微观数值模拟研究进展[J]. 航空发动机, 2021, 47(4): 141-148.
[2].卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术, 2021, 64(8): 22-28.
[3].李世峰, 黄康, 马护生, 等. 航空发动机涡轮叶片气膜冷却孔设计与制备技术研究进展[J]. 热能动力工程, 2022, 9(37): 1-11.
[4].肖强, 马国庆, 靳龙平. 镍基高温合金大倾角气膜孔飞秒激光加工机理与工艺研究[J]. 工具技术, 2022, 56(10): 63-69.
[5].朱俊. 飞秒激光加工气膜孔工艺对单晶高温合金再结晶行为及高温疲劳性能的影响研究[D]. 南昌: 南昌大学, 2022.
[6].Wu S L, Zheng H P, Wang X Y, et al. High-capacity, low-tortuosity LiFePO4-Based composite cathode enabled by self-supporting structure combined with laser drilling technology[J]. Chemical Engineering Journal, 2022, 430(P2): 1-6.
[7].杨一哲, 杨昭, 赵云松, 等. 不同激光加工工艺的DD406单晶高温合金气膜孔高温氧化行为[J]. 航空材料学报, 2022, 42(2): 29-40.
[8].Schroeder R P, Thole K A. Effect of in-hole roughness on film cooling from a shaped hole[J]. Journal of Turbomachinery, 2017, 210(2): 103-110.
[9].宋金榜, 易海云. 航空发动机涡轮叶片气膜孔加工工艺[J]. 工具技术, 2020, 54(12): 82-86.
[10].张朕. 镍基单晶高温合金叶片气膜孔的超短脉冲激光加工研究[D]. 沈阳: 东北大学, 2019.
[11].渠晓刚, 高杰, 韩利萍, 等. 增材制造弯孔道的磨粒流抛光仿真与试验[J]. 现代制造工程, 2023(7): 97105.
[12].Zhang L, Ding C, Han Y J, et al. Investigation into a novel pulsating cavitation air jet polishing method for Ti-6Al-4V alloy[J]. Tribology International, 2022, 175: 1-5.
[13].张钰. 磁流变抛光过程中抛光液的磁力法修整机理与装置研究[D]. 北京: 北京交通大学, 2021.
[14].赵鑫. 3D打印钛合金内流道复合抛光方法及机理研究[D]. 西安: 西安理工大学, 2021.
[15].刘洋, 李俊烨, 苏宁宁, 等. 磨粒流抛光弯管的数值模拟与试验优化[J]. 机械设计与制造, 2021(7): 137-140.
[16].Li J Y, Sui T, Lu H, et al. Surface quality control technology of abrasive flow polishing S-shaped elbow[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(1-2): 683-699.
[17].石岩, 郭志, 刘佳, 等. SLM增材制造微流道内表面磨粒流抛光工艺与机理[J]. 表面技术, 2021, 50(9): 361-369.
[18].Gwon H, Chae J, Jeong C, et al. Martensitic transformation during electrochemical polishing ofmetastableaustenitic stainless steel[J]. Acta Materialia, 2023, 245: 1-8.
[19].Natarajan Y. Experimental investigation on abrasive water jet polishing of stainless steel: A preliminary study[J]. International Journal of Surface Science and Engineering, 2021, 15(1): 20-25.
[20].Ding C, Liu M Y, Wan S Z, et al. The sustainable treatment of chemical polishing wastewater under low-carbon economy: Pollutants removal, resource recovery and energy generation[J]. Journal of Cleaner Production, 2023, 414: 1-5.
[21].胡玉刚. 复合运动磁针磁力抛光机的设计与实验研究[D]. 鞍山: 辽宁科技大学, 2020.
[22].Hirano T, Furuki T, Kousaka H. Derivation of optimum abrasive for improving magnetic polishing rate for hybrid metal AM titanium alloy and creating a polishing prediction model[J]. International Journal of Abrasive Technology, 2020, 10(2): 1-6.
[23].Wu J Z, Afzal B, Huang Z L, et al. Study on new magnetorheological chemical polishing process for GaN crystals: polishing solution composition, process parameters, and roughness prediction model[J]. Smart Materials and Structures, 2023, 32(3): 1-6.
[24].王江涛. 蓝宝石晶片的磁流变化学抛光方法研究[D]. 重庆: 重庆大学, 2022.
[25].Fontaine A L, Yen H W, Trimby P, et al. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling[J]. Corrosion Science, 2014, 85: 1-6.
相似文献/References:
[1]吴 冬 *,张亚光,高军帅,等.航空发动机圆板槽壁重熔层去除研究[J].电镀与精饰,2023,(11):9.[doi:10.3969/j.issn.1001-3849.2023.11.002]
Wu Dong*,Zhang Yaguang,Gao Junshuai,et al.Research on remelting layer removal of circular plate groove wall of aeroengine[J].Plating & Finishing,2023,(10):9.[doi:10.3969/j.issn.1001-3849.2023.11.002]