Lu Xin,Feng Changjie*,Li Jie,et al.Deposition mechanism and coating characterization for the trivalent chromium plating process[J].Plating & Finishing,2024,(3):25-33.[doi:10.3969/j.issn.1001-3849.2024.03.004]
三价铬电沉积机理研究及镀层表征
- Title:
- Deposition mechanism and coating characterization for the trivalent chromium plating process
- Keywords:
- trivalent chromium plating ; complexing agent ; electrodeposition mechanism ; microscopic results ; corrosion resistance properties
- 分类号:
- TQ153.11 文 献标识码: A
- 摘要:
- 在硫酸盐三价铬电沉积体系中,通过赫尔槽实验对不同络合剂含量进行了筛选,得到络合剂最佳含量配比为甲酸铵 80 g/L 、草酸铵 20 g/L 以及尿素 30 g/L ,最佳电流密度范围为 5.11 A/dm 2 ~20.68 A/dm 2 ;通过循环伏安曲线和阴极极化曲线分析三价铬电沉积机理,发现三价铬的沉积过程分两步进行:第一步为 Cr 3+ +e → Cr 2+ ,过程不可逆;第二步为 Cr 2+ +2e → Cr ,可逆;草酸铵会增大阴极极化,甲酸铵和尿素会降低阴极极化;电沉积 20 min 得到的铬镀层, XPS 分析表面镀层由单质 Cr 、 Cr 2 O 3 及 Cr ( OH ) 3 构成;微观结构观测发现,随着电沉积时间增加,镀层由表面平整形貌逐渐转变为瘤状结构形貌;镀层呈现明显的( 110 )择优取向;电化学研究表明,相比 20 min 铬镀层, 5 min 铬镀层的耐蚀性较好,腐蚀电位由 - 0.6377 V 提高至 - 0.5633 V ,腐蚀电流由 6.1030×10 -6 A/cm 2 提高至 5.4031×10 -6 A/cm 2 。
- Abstract:
- : Different complexing agent contents were screened through Hull Cell experiments in the sulfate trivalent chromium electrodeposition system , and the best content ratio of complexing agent was obtained. The optimum content ratio was 80 g/L ammonium formate , 20 g/L ammonium oxalate and 30 g/L urea. The optimal current density range was 5.11 A/dm 2 to 20.68 A/dm 2 .Cyclic voltammetry and steady polarization were used to study the mechanism of Cr ( III ) electrodeposition in this system , the trivalent chromium reduced through two steps. The first step was Cr 3+ +e → Cr 2+ , which it was irreversible , while the second step was Cr 2+ +2e → Cr , which it was quasi-reversible. Ammonium oxalate increased cathodic polarization , while ammonium formate and urea reduced cathodic polarization.The chromium coating obtained by electrodeposited for 20 min was composed of Cr , Cr 2 O 3 and Cr ( OH ) 3 according to XPS analysis. The microstructure observation showed that with the increase of electrodeposition time , the morphology of the coating gradually changed from a flat surface to a nodular tructure. The plating layer exhibited a clear ( 110 ) preferred orientation. Electrochemical studies had shown that compared with 20 min chromium coating , 5 min chromium coating had better corrosion resistance , the corrosion potential increases from - 0.6377 V to - 0.5633 V , and the corrosion current increases from 6.1030×10 -6 A/cm 2 increased to 5.4031×10 -6 A/cm 2 .
参考文献/References:
[1] 王建华 , 高荣龙 , 向可友 , 等 . 含草酸盐的三价铬装饰镀工艺 [J]. 电镀与精饰 , 2018, 40(8): 34-37.
[2] Kvashnin A G ,Oganov A R, Samtsevich A I, et al. Computation search for novel hard chromium-based materials[J]. Journal of Physical Chemistry Letters, 2017, 8(4): 755-764.
[3] 何新快 , 吴璐烨 , 侯柏龙 , 等 . 三价铬超声 - 脉冲电沉积 Cr/SiC 纳米复合镀层 [J]. 功能材料 , 2013, 44(6): 906-910.
[4] Zeng Z, Zhang Y, Zhao W, et al. Role of complexing ligands in trivalent chromium electrodeposition[J]. Surface Coating Technology, 2011(205): 4771-4775.
[5] Danilov F I, Protsenko V S, Gordiienko V O, et al. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits[J]. Applied Surface Science, 2011(257): 8048-8053.
[6] 屠振密 , 胡会利 , 侯峰岩 . 环保型三价铬电沉积发展中的问题、解决途径及其展望 [J]. 材料保护 , 2012, 45(3): 52-55.
[7] 邓正平 , 田志斌 , 詹益腾 , 等 . 代六价铬电镀现状及趋势 [J]. 电镀与涂饰 , 2020, 39(7): 440-443.
[8] Protsenko V, Danilov F. Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds[J]. Electrochimica Acta, 2009, 54(24): 5666-5672.
[9] Zeng Z, Sun Y, Zhang J. The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid[J]. Electrochemistry Communications, 2009, 11(2): 331-334.
[10] Edy J E, McMurray H N, Lammers K R,et al. Kinetics of corrosion-driven cathodic disbondment on organic coated trivalent chromium metal-oxide-carbide coatings on steel[J]. Corrosion Science, 2019(157): 51-61.
[11] 王超 , 周长虹 . 全硫酸盐常温三价铬镀铬工艺 [J]. 电镀与涂饰 , 2015, 34(7): 396-400.
[12] Wijenberg J H O J, Steegh M, Aarnts M P, et al. Electrodeposition of mixed chromium metal-carbide-oxide coatings from a trivalent chromium-formate electrolyte without a buffering agent[J]. Electrochim Acta, 2015, 173: 819-826.
[13] 舒莉 , 刘小华 , 魏喆良 . 甲酸盐三价铬电镀工艺的研究 [J]. 表面技术 , 2014, 43(2): 83-88.
[14] 张向宇 . 实用化学手册 [M]. 北京 : 国防工业出版社 , 2011.
[15] 董红兵 . 基础化学实验 [M]. 武汉 : 华中科技大学出版社 , 2017.
[16] 黄长山 , 张宏图 , 李长鸣 , 等 . 草酸体系三价铬电镀铬新工艺研究 [J]. 河南科学 , 1992(3): 264-270.
[17] 杨建文 , 邓型深 , 徐浩森 , 等 . 4 种羧酸盐配位剂对装饰性三价铬电镀的作用 [J]. 材料保护 , 2009, 42(6): 39-41, 87.
[18] 何新快 . 羧酸盐 - 尿素体系脉冲电沉积纳米晶铬镀层的工艺优化 [J]. 材料保护 , 2009, 42(3): 44-47.
[19] 邓姝皓 , 龚竹青 , 易丹青 , 等 . 三价铬还原电沉积机 理 [J]. 中南大学学报 ( 自然科学版 ), 2005(2):2 13-218.
[20] 杨余芳 , 龚竹青 , 李强国 . 三价铬的电化学沉积 [J]. 中南大学学报 ( 自然科学版 ), 2008(1): 112-117.
[21] 刘洋 , 王明涌 , 栗磊 , 等 . 三价铬镀液组分的存在形式及其对电镀的影响规律 [J]. 中国有色金属学报 , 2016, 26(5): 1136-1142.
[22] 冯厚宝 . 硫酸盐体系三价铬电沉积厚铬 [D]. 哈尔滨 : 哈尔滨工业大学 , 2013.
[23] 范文俊 , 崔红兵 , 王萌 , 等 . 从三价铬溶液电沉积非晶 Cr-C 镀层及其性能研究 [J]. 电镀与精饰 , 2020, 42(12): 37-42.
[24] 刘斯凤 , 王培铭 , 李宗津 , 等 . 粉煤灰地聚合物固封 Cr 3+ 的 FTIR 和 XPS 研究 [J]. 光谱学与光谱分析 , 2008(1): 67-71.
[25] 孙杰 , 安成强 , 于晓中 , 等 . 不同表面状态镀锡钢板铬酸盐钝化膜中铬元素的 XPS 分析 [J]. 光谱学与光谱分析 , 2009, 29(2): 544-547.
[26] 蒋义锋 , 杨防祖 , 黄令 , 等 . 三价铬镀铬之三 - 硫酸盐镀铬表征 [C]. 2009 年全国电子电镀及表面处理学术交流会论文集 , 2009: 107-109.
[27] 张靖 , 郭兴华 , 杜克勤 , 等 . 新型三价铬镀层耐蚀性的评价 [J]. 汽车工艺与材料 , 2016(3): 38-44.
[28] 胡君梅 . 硫酸盐体系三价铬常温镀铬镀层的性能研究 [J]. 化学工程师 , 2015(2): 65.
[29] Zeng Z, Zhang J. Correlation between the structure and wear behavior of chromium coatings electrodeposited from trivalent chromium baths[J]. Triboligy Letters, 2008, 30(2): 107-111.
[30] 马立文 , 陈白珍 , 何新快 . 羧酸盐尿素体系中三价铬电沉积机理 [J] . 物理化学学报 , 2007(10): 1607-1611.
相似文献/References:
[1]宋振兴*,孟香茗,李岱原,等.电镀Ni-Sn镀层在人工汗液中的腐蚀行为[J].电镀与精饰,2020,(5):13.[doi:10.3969/j.issn.1001-3849.2020.05.0020]
SONG Zhenxing*,MENG Xiangming,LI Daiyuan,et al.Corrosion Behavior of Ni-Sn Alloy in Artificial Sweat[J].Plating & Finishing,2020,(3):13.[doi:10.3969/j.issn.1001-3849.2020.05.0020]
[2]郭崇武*,詹兴刚,王大铭,等.氯化钾无氰镀镉工艺的边界条件[J].电镀与精饰,2024,(12):114.
Guo Chongwu*,Zhan Xinggang,Wang Daming,et al.Boundary conditions for the cyanide-free potassium chloride cadmium plating[J].Plating & Finishing,2024,(3):114.
备注/Memo
收稿日期: 2023-04-04 修回日期: 2023-05-19 作者简介: 芦鑫( 1998 ―),女,硕士生, email : 1210259510@qq.com * 通信作者: 冯长杰, email : chjfengniat@126.com 基金项目: 辽宁省“兴辽英才计划”项目资助( XLYC2002031 );沈阳航空航天大学引进人才启动基金资助( 19YB05 )