Si Zhiwei*,Yin Zhengyu,Liu Yue,et al.Effect of Er ( NO 3 ) 3 addition on wear resistance of pure magnesium micro-arc oxide film layer[J].Plating & Finishing,2024,(3):59-65.[doi:10.3969/j.issn.1001-3849.2024.03.009]
稀土盐Er(NO3)3掺杂对纯镁微弧氧化膜层耐磨性的影响
- Title:
- Effect of Er ( NO 3 ) 3 addition on wear resistance of pure magnesium micro-arc oxide film layer
- Keywords:
- pure magnesium ; micro-arc oxidation ; rare earth salt ; abrasion resistance
- 分类号:
- TQ153.6
- 文献标志码:
- A
- 摘要:
- 针对纯镁耐磨性较差这一问题,通过微弧氧化( MAO )技术在 Na 2 SiO 3 -C 10 H 14 N 2 Na 2 O 8 电解液中对纯镁进行表面改性处理,旨在提高镁的耐磨性。在电解液中添加不同量的稀土盐 Er ( NO 3 ) 3 ,研究 Er ( NO 3 ) 3 添加量对纯镁微弧氧化膜层的相组成、微观结构、显微硬度、临界载荷以及摩擦系数的影响。结果表明,电解液中未添加 Er ( NO 3 ) 3 时,膜层中主要有 Mg 、 MgO 、 Mg 2 SiO 3 和 MgF 2 相;电解液中添加 Er ( NO 3 ) 3 后,膜层中检测到 Er 2 O 3 相。电解液中添加稀土盐 Er ( NO 3 ) 3 后,膜层表面的孔洞直径减小,当稀土盐 Er ( NO 3 ) 3 的添加量超过 2.85 g/L 时,膜层表面出现明显的裂纹。在电解液中添加稀土盐 Er ( NO 3 ) 3 后,经 MAO 处理得到膜层的显微硬度均高于未添加稀土盐 Er ( NO 3 ) 3 ,当稀土盐 Er ( NO 3 ) 3 的添加量为 2.85 g/L 时,膜层的显微硬度值最大,约为 185.8±7.1 HV 。膜层的临界载荷及摩擦系数随稀土盐 Er ( NO 3 ) 3 添加量的增加呈现先增加后减小的趋势,在稀土盐 Er ( NO 3 ) 3 的添加量为 2.85 g/L 时,膜层的临界载荷及摩擦系数分别约为 12.2±0.5 N 和 0.15 。
- Abstract:
- : In view of the poor wear resistance of pure magnesium , the surface modification of pure magnesium in Na 2 SiO 3 -C 10 H 14 N 2 Na 2 O 8 electrolyte by micro-arc oxidation ( MAO ) technology is carried out to improve the wear resistance of pure magnesium. Different amounts of rare earth salt Er ( NO 3 ) 3 were added to the electrolyte to study the effects of Er ( NO 3 ) 3 addition on the phase composition , microstructure , microhardness , critical load and friction coefficient of pure magnesium microarc oxide layer. The results showed that when Er ( NO 3 ) 3 was not added to the electrolyte , there were mainly Mg , MgO , Mg 2 SiO 3 and MgF 2 phases in the film layer , and Er 2 O 3 phases were detected in the film layer after Er ( NO 3 ) 3 was added to the electrolyte. After the addition of rare earth salt Er ( NO 3 ) 3 to the electrolyte , the diameter of the pores on the surface of the film layer decreased , and when the amount of rare earth salt Er ( NO 3 ) 3 added exceeded 2.85 g/L , obvious cracks appeared on the surface of the film layer. After adding rare earth salt Er ( NO 3 ) 3 to the electrolyte , the microhardness of the film layer obtained by MAO treatment was higher than that of the rare earth salt Er ( NO 3 ) 3 , and when the amount of rare earth salt Er ( NO 3 ) 3 was 2.85 g/L , the microhardness value of the film layer was the largest , about 185.8±7.1 HV. The critical load and friction coefficient of the film layer increased first and then decreased with the increase of rare earth salt Er ( NO 3 ) 3 , and when the addition of rare earth salt Er ( NO 3 ) 3 was 2.85 g/L , the critical load and friction coefficient of the film layer were about 12.2±0.5 N and 0.15.
参考文献/References:
[1] Xu L, Liu X, Sun K, et al. Corrosion behavior in magnesium-based alloys for biomedical applications[J]. Materials, 2022, 15(7): 2613.
[2] Hafeez N, Liu S, Lu E, et al. Mechanical behavior and phase transformation of β -type Ti-35Nb-2Ta-3Zr alloy fabricated by 3D-printing[J]. Journal of Alloys and Compounds, 2019, 790: 117-126.
[3] Du X, Xi T, Yang C, et al. Cu addition retards the static recrystallization of cold-deformed 316L biomedical stainless steel[J]. Journal of Materials Research and Technology, 2022, 19: 1673-1677.
[4] Zhang L C, Chen L Y, Wang L. Surface modification of titanium and titanium alloys: Technologies, developments, and future interests[J]. Advanced Engineering Materials, 2020, 22(5): 1901258.
[5] Strasky J, Preisler D, Seiner H, et al. Achieving high strength and low elastic modulus in interstitial biomedical Ti-Nb-Zr-O alloys through compositional optimization[J]. Materials Science and Engineering: A, 2022, 839: 142833
[6] De Baaij J H F, Hoenderop J G J, Bindels R J M. Magnesium in man: implications for health and disease[J]. Physiological Reviews, 2015(3): 156-165.
[7] Wang J L, Xu J K, Hopkins C. Biodegradable magnesium-based implants in orthopedics-A general review and perspectives[J]. Advanced Science, 2020, 7(8): 1902443.
[8] Wu L, Zhao J, Xie Y, et al. Progress of electroplating and electroless plating on magnesium alloy[J]. Transactions of Nonferrous, 2010, 20: s630-s637.
[9] El Mahallawy N, Bakkar A, Shoeib M, et al. Electroless Ni-P coating of different magnesium alloys[J]. Surface and Coatings Technology, 2008, 202(21): 5151-5157.
[10] Kumar L G S, Thirumalaikumarasamy D, Karthikeyan K, et al. An overview of recent trends and challenges of post treatments on magnesium alloys[J]. Materials Today: Proceedings, 2023, 78: 700-707.
[11] Wang X M, Zhang Z Q, Li S Q, et al. Chemical conversion coatings chemical conversion coatings: Fundamentals and recent advances[J]. Conversion Coatings for Magnesium and its Alloys, 2022, 25: 3-28.
[12] Tabish M, Zhao J, Anjum M J, et al. Self-healing chromate-free conversion coatings[M]//Conversion Coatings for Magnesium and its alloys. Cham: Springer International Publishing, 2022: 299-314.
[13] Galio A F, Lamaka S V, Zheludkevich M L, et al. Inhibitor-doped sol-gel coatings for corrosion protection of magnesium alloy AZ31[J]. Surface and Coatings Technology, 2010, 204(9/10): 1479-1486.
[14] Liu X, Zhang T C, He H, et al. A stearic acid/CeO 2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition[J]. Journal of Alloys and Compounds, 2020, 834: 155210.
[15] Yang B, Wang P, Hu J, et al. Improving structure and corrosion resistance of micro-arc oxidation coatings on aluminum alloy with the addition of La 2 O 3 [J]. International Journal of Materials Research, 2022, 113(8): 693-700.
[16] Shen Y, Fang K, Xiang Y, et al. Improvement in osteogenesis, vascularization, and corrosion resistance of titanium with silicon-nitride doped micro-arc oxidation coatings[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1023032.
[17] 王占营 , 马颖 , 安守静 , 等 . 电解液配方对纯镁微弧氧化膜层耐蚀性的影响 [J]. 材料导报 , 2023, 37(15): 173-182.
[18] Zhao Z L, Chen L, Ren H G. Effect of pulse frequency on growth of ceramic coatings formed on 2090 Al-Li alloy[J]. Surface Engineering, 2012, 28(6): 442-447.
[19] Wang P, Pu J, Xiao Y T, et al. Effect of graphite additives in electrolytes on characteristics of micro-arc oxidation coatings on 7E04 aluminum alloy[J]. Surface Review and Letters, 2019, 26(4): 1850178.
[20] Lv X, Cao L, Wan Y, et al. Effect of different electrolytes in micro-arc oxidation on corrosion and tribological performance of 7075 aluminum alloy[J]. Materials Research Express, 2019, 6(8): 086421.
[21] Wang P, Pu J, Liu X, et al. Characterization of micro-arc oxidation coatings on cast aluminum alloy doped with different Y 2 O 3 particle concentration[J]. Materials Research Express, 2019, 6(9): 096544.
[22] Duan Y F, Liu J W, Wang P. Effect of In 2 (SO 4 ) 3 on characteristics of Al-Li alloy MAO coating[J]. Surface Engineering, 2022, 38(4): 440-447.
[23] Mondal S, Park S, Choi J, et al. Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications[J]. Ceramics International, 2020, 46(10): 16020-16031.
[24] Magdalane C M, Kaviyarasu K, Raja A, et al. Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: Investigation of cytotoxicity, antibacterial growth inhibition using catalyst[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 185: 275-282.
相似文献/References:
[1]徐振邦,陆振涛,柯喜敏,等.铝合金电子元器件的表面涂层与耐蚀性能研究[J].电镀与精饰,2019,(10):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
XU Zhenbang,LU Zhentao,KE Ximin,et al.Study on Surface Coating and Corrosion Resistance of Aluminum Alloy Electronic Components[J].Plating & Finishing,2019,(3):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
[2]方云鹏,杜克勤*,郭泉忠,等.负向电压对LA91镁锂合金微弧氧化膜耐蚀性的影响[J].电镀与精饰,2021,(3):21.[doi:10.3969/j.issn.1001-3849.2021.03.005]
FANG Yunpeng,DU Keqin*,et al.方云鹏1,2,杜克勤1*,郭泉忠1,2,王勇1,潘晓春3[J].Plating & Finishing,2021,(3):21.[doi:10.3969/j.issn.1001-3849.2021.03.005]
[3]张 宇*,黄传林,王 恺.铝合金微弧氧化工件局部平面保护方法研究[J].电镀与精饰,2022,(11):1.[doi:10.3969/j.issn.1001-3849.2022.11.001]
ZHANG Yu*,HUANG Chuanlin,WANG Kai.Research on Micro-Arc Oxidation Plane Protection of Aluminum Alloys[J].Plating & Finishing,2022,(3):1.[doi:10.3969/j.issn.1001-3849.2022.11.001]
[4]李廷取 *,刘祥玲,刘文异. 不同占空比对6061铝合金微弧氧化着色及性能的影响研究 [J].电镀与精饰,2022,(9):20.[doi:10.3969/j.issn.1001-3849.2022.09.004]
LI Tingqu *,LIU Xiangling,LIU Wenyi.Study on Microarc Oxidation Coloring and Properties of 6061 Aluminum Alloy with Different Duty Ratios[J].Plating & Finishing,2022,(3):20.[doi:10.3969/j.issn.1001-3849.2022.09.004]
[5]张雨露,祁 星,姜 波,等.硝酸铈添加剂对 AZ91D 镁合金微弧氧化膜组织与性能的影响[J].电镀与精饰,2024,(8):18.[doi:10.3969/j.issn.1001-3849.2024.08.003]
,*,et al.Effects of cerous nitrateadditive on microstructure and properties of MAO coatings on AZ91D magnesium alloy[J].Plating & Finishing,2024,(3):18.[doi:10.3969/j.issn.1001-3849.2024.08.003]
[6]收稿日期: 0-0-7 修回日期: 0-0-8.镁合金微弧氧化膜致密化技术研究进展[J].电镀与精饰,2024,(11):76.
Wu Yu * Li Yueqiao Hong Wei Shen Yizhou * Du Gang Shen Zhicong.Research advance in densification for micro-arc oxidation film on magnesium alloy[J].Plating & Finishing,2024,(3):76.
[7]刘明杰,刘宁华*,赖心翘,等.doi: 10.3969/j.issn.1001-3849.2025.02.016一种用于镁铝合金表面微弧氧化陶瓷膜的封闭剂及性能研究[J].电镀与精饰,2025,(02):106.
Liu Mingjie,Liu Ninghua*,Lai Xinqiao,et al.A sealant and performance study for micro-arc oxide ceramic film on the surface of magnesium-aluminum alloy[J].Plating & Finishing,2025,(3):106.
备注/Memo
收稿日期: 2023-10-08 修回日期: 2023-10-29 作者简介: 司志伟( 2001 —),男,本科,主要从事电化学方面研究, email : jmsdxsizhiwei@163.com?/html>