Gao Xinxin,Liu Yu,Liang Xiaoming*,et al.The influence of static and dynamic hydrogen charging on the corrosion and hydrogen embrittlement properties of 1 000 MPa high-strength steel[J].Plating & Finishing,2024,(12):56-60.
静、动态充氢对1 000 MPa级高强钢腐蚀及氢脆性能的影响
- Title:
- The influence of static and dynamic hydrogen charging on the corrosion and hydrogen embrittlement properties of 1 000 MPa high-strength steel
- 分类号:
- TG174
- 文献标志码:
- A
- 摘要:
- 采用恒电位充氢条件下的电化学实验,静、动态充氢后慢应变拉伸试验研究了1 000 MPa级高强钢在海水中的腐蚀及氢脆性能。结果表明:电化学充氢后材料的自腐蚀电位负移,腐蚀热力学倾向增大,析氢电位略有正移,析氢倾向增加。高强钢的静、动态充氢拉伸实验表明,充氢后,金属的断裂方式由韧性向解理和沿晶断裂方向转变,氢脆性能增强;静态充氢对材料导致的脆化和损伤程度要远高于动态,相对于静态充氢时间的加长,极化电位对材料氢脆性能的影响更明显。
- Abstract:
- The corrosion and hydrogen embrittlement properties of 1 000 MPa high-strength steel in seawater were studied through electrochemical experiments under constant potential hydrogen charging conditions and slow strain tensile tests after static and dynamic hydrogen charging. The results show that after electrochemical hydrogenation, the self-corrosion potential of the material shifts negatively, the corrosion thermodynamic tendency is increased. The hydrogen evolution potential slightly shifts positively, and the hydrogen evolution tendency is increased. The static and dynamic hydrogen charging tensile tests of high-strength steel show that after hydrogen charging, the fracture mode of the metal changes from toughness to cleavage and intergranular fracture direction, and the hydrogen embrittlement performance is enhanced. The degree of embrittlement and damage caused by static hydrogenation is much higher than that caused by dynamic hydrogenation. Compared to the prolongation of static hydrogenation time, the effect of polarization potential on the hydrogen embrittlement performance of materials is more significant
参考文献/References:
[1].曹歆昕, 余剑, 贾方舟, 等. 2219铝合金在N2O4溶液中的耐蚀性能[J]. 电镀与精饰, 2018, 40(6): 33-38.
[2].刘蒙. 船用5083和5059铝合金板材耐腐蚀性能对比研究[J]. 舰船科学技术, 2021, 43(13): 1-4.
[3].高睿, 包平, 徐亮, 等. 硅酸盐钝化对化工管道用钢耐蚀性能的影响[J]. 电镀与精饰, 2022, 44(5): 13-20.
[4].孙永伟, 陈继志, 刘军. 1000MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, 51(11): 1315-1324.
[5].高心心, 郭建章, 张海兵. 1000MPa级高强钢焊接件的氢脆敏感性研究[J]. 材料导报, 2017, 31(6): 93-97, 104.
[6].Batt C, Robinson M J. Cathodic protection requirements for high strength steel in sea water assessed by potentiostatic weight loss measurements[J]. British Corrosion Journal, 2013, 37(1): 31-36.
[7].Cheng Y F. Analysis of electrochemical hydrogen permeation through X65 pipeline steel and its implications on pipeline stress corrosion cracking [J]. International Journal of Hydrogen Energy, 2007, 32(9): 1269-1276.
[8].田野, 王毛球, 李金许, 等. 1500 MPa级40CrNi3MoV钢的氢脆敏感性[J]. 金属学报, 2008, 44(4): 403-408.
[9].Rong W. Effects of hydrogen on the fracture toughness of a X70 pipeline steel[J]. Corrosion Science, 2009, 51(12): 2803-2810.
[10].Maier H J, Popp W, Kaesche H. Effects of hydrogen on ductile fracture of a spheroidized low alloy steel[J]. Materials Science and Engineering A, 1995, 191(1): 17-26.
[11].赵荣, 陈业新. 氢在Q960纯净钢中的扩散[J]. 上海大学学报(自然科学版), 2013, 19(1): 61-66.
[12].范瑛, 谭云, 丰杰, 等. 内部氢对21-6-9奥氏体不锈钢性能影响研究[J]. 材料导报, 2014, 28(24): 479-482.
[13].张体明, 赵卫民, 郭望, 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[14].刘斌, 李旭, 陈东旭, 等. 电化学充氢对GPa钢腐蚀性能的影响[J]. 辽宁科技大学学报, 2022, 45(5): 334-338.
[15].仇文杰, 李国敏, 熊海燕, 等. 氢在钢管壁内的扩散及氢腐蚀实验研究[J]. 力学与实践, 2022, 44(4): 776-785.
[16].赵小宇, 黄峰, 甘丽君, 等. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[17].高心心, 郭建章, 潘大伟, 等. 900MPa级高强钢气保焊焊接接头的组织与性能[J]. 金属热处理, 2017, 42(6): 33-37.
[18].Hadam U , Zakroczymski T .Absorption of hydrogen in tensile strained iron and high-carbon steel studied by electrochemical permeation and desorption techniques[J]. International Journal of Hydrogen Energy, 2009, 34(5):2449-2459.
[19].Kim S J, Okido M, Moon K M. An electrochemical study of cathodic protection of steel used for marine structures[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 560-565.