PDF下载 分享
[1]李勇、朱思达、赵坤、邵艳群.碱水电解用NiPOH-RuO2催化电极的析氢析氧反应研究[J].电镀与精饰,2024,(12):10-18.
 Li Yong,Zhu Sida,Zhao Kun,et al.Study on the HER and OER catalytic properties of NiPOH-RuO2 for alkaline water electrolysis[J].Plating & Finishing,2024,(12):10-18.
点击复制

碱水电解用NiPOH-RuO2催化电极的析氢析氧反应研究

参考文献/References:

[1].Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytichydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918.
[2].Tan H,Ge P, Shao Y, et al. Zn-Co-S coatings with a rough and porous nano-dendrite structure for high-performance asymmetric supercapacitors without binder[J]. Electrochimica Acta, 2022, 429: 141048.
[3].Li X, Elshahawy A M, Guan C, et al. Metal phosphides and phosphates-ased electrodes for electrochemical supercapacitors[J]. Small, 2017, 13(39): 1701530.
[4].Tan Y, Che Q, Li Q. Generating highly active Ni11(HPO3)8(OH)6/Mn3O4 catalyst for electrocatalytic hydrogen evolution reaction by electrochemical activation[J]. Journal of Colloid and Interface Science, 2020, 560: 714-721.
[5].Lv S, Sun Y, Liu D, et al. Construction of S-Scheme heterojunction Ni11(HPO3)8(OH)6/CdS photocatalysts with open framework surface for enhanced H2 evolution activity[J]. Journal of Colloid and Interface Science, 2023, 634: 148-158.
[6].Sun F, Tang Q, Jiang D. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction[J]. Acs Catalysis, 2022, 12(14): 8404-8433.
[7].Ma Y, Li Y, Zhang F, et al. Enhanced visible light photocatalytic hydrogen evolution by Ni cations precise institute S anion in CdS and P ions targeted linking with Ni[J]. Fuel: A Journal of Fuel Science, 2024: 355(1): 1-11.
[8].Perivoliotis D K, Ekspong J, Zhao X. Recent progress on defect-rich electrocatalysts for hydrogen and oxygen evolution reactions[J]. Nano Today, 2023, 50: 101883.
[9].Li B, Shi Y, Huang K, et al. Cobalt‐doped nickel phosphite for high performance of electrochemical energy storage[J]. Small, 2018, 14(13), 21703811.
[10].Shao Y, Feng K, Guo J, et al. Electronic structure and enhanced photoelectrocatalytic performance of RuxZn1?xO/Ti electrodes[J]. Journal of Advanced Ceramics, 2021, 10(5): 1025-1041.
[11].Yu F, Pang L, Wang H. Preparation of mulberry-like RuO2 electrode material for supercapacitors[J]. Rare Metals, 2021, 40(2): 440-447.
[12].Wang J, Ye T, Shao Y, et al. Flower-like nanostructured ZnCo2O4/RuO2 electrode materials for high performance asymmetric supercapacitors[J]. Journal of the Electrochemical Society, 2021, 168(12): 120553.
[13].Ge P, Tan H, Shao Y, et al. Electrochemical performance of MoO3-RuO2/Ti in H2SO4 electrolyte as anodes for asymmetric supercapacitors[J]. Electrochimica Acta, 2022, 429: 140984.
[14].Wang D, Jiao D, Gong M, et al. Nickel metaphosphate supported ruthenium for all pH hydrogen evolution: From single atom, cluster to nanoparticle[J]. Applied Catalysis B: Environmental, 2023, 325: 122331.
[15].Duvigneaud P H, Reinhard-Derie D. DTA study of RuO2 formation from the thermal decomposition of ruthenium(III) hydrate[J]. Thermochimica Acta, 1981, 51(2-3): 307-314.
[16].Wang V, Xu N, Liu J, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.
[17].Xu Z, Du C, Yang H, et al. NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors[J]. Chemical Engineering Journal, 2021, 421: 127871.
[18].Sydam R, Deepa M, Shivaprasad S M, et al. A WO3-poly(butyl viologen) layer-by-layer film/ruthenium purple film based electrochromic device switching by 1 volt application[J]. Solar Energy Materials and Solar Cells, 2015, 132: 148-161.
[19].Tu R, Lv W, Sun Y, et al. Ru-RuO2-Nb2O5/Hβ zeolite catalyst for high-active hydrogenation of lignin derivatives at room temperature[J]. Chemical Engineering Journal, 2023, 453: 139718.

更新日期/Last Update: 2024-12-18