Li Yong,Zhu Sida,Zhao Kun,et al.Study on the HER and OER catalytic properties of NiPOH-RuO2 for alkaline water electrolysis[J].Plating & Finishing,2024,(12):10-18.
碱水电解用NiPOH-RuO2催化电极的析氢析氧反应研究
- Title:
- Study on the HER and OER catalytic properties of NiPOH-RuO2 for alkaline water electrolysis
- Keywords:
- RuO2; Ni11(HPO3)8(OH)6; first-principles calculations; electrolyzingwater; hydrogenevolution reaction; oxygen evolution reaction
- 分类号:
- TG172.3
- 文献标志码:
- A
- 摘要:
- 电解水制氢用电极材料对析氢和析氧反应起着重要的作用。羟基亚磷酸镍(Ni11(HPO3)8(OH)6,缩写为NiPOH)具有多孔结构和丰富的活性中心备受关注,然而其低电导率以及相应的缓慢电子转移速率限制了其电催化性能。添加高导电性和活性物质提升电子传输效率和反应动力学,有望增强其在电解水过程中的催化活性与持久性。本文采用水热法在泡沫镍上原位生长NiPOH-x at.% RuO2电极材料,采用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、线性扫描伏安法(LSV)和计时电位法(CP)等研究RuO2含量对电极微观形貌及其电化学性能的影响,辅以第一性原理计算探讨NiPOH-x at.% RuO2在全解水过程中的性能。结果表明:添加RuO2可改变NiPOH微球的形貌,使其具有更大比表面积。Ni元素是由Ni2+和Ni3+组成,Ru由Ru3+和Ru4+组成。Ru掺杂使NiPOH的电子转移能垒降低,费米能级附近电子密度增大。当电流密度为10 mA/cm2时,RuO2的加入明显降低了析氢过电位,NiPOH-3 at.% RuO2的析氢过电位最低为93 mV,而NiPOH电极为161 mV,NiPOH-3 at.% RuO2电极的析氧Tafel斜率同期达到最小。NiPOH-x at.% RuO2电极的析氢过程是以Heyrovsky步骤为主的Volmer-Heyrovsky控制反应。
- Abstract:
- Electrode materials for water electrolysis play an important role in hydrogen evolution and oxygen evolution. Nickel hydroxyphosphite(Ni11(HPO3)8(OH)6, abbreviated as NiPOH) has more porous structures and abundant active sites, however, its low conductivity with a corresponding slow electron transfer rate limits its electrocatalyticproperties.The addition of highly conductive and active substances can improve the electron transmission efficiency and reaction kinetics, which is expected to enhance its catalytic activity and stability during the process of water electrolysis. In this paper, the NiPOH-x at.% RuO2 electrodes was grown in situ on the nickel foam by a hydrothermal method. X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), linear sweep voltammetry(LSV) and Chronopotentiometry(CP)wereused to study the influence of RuO2 content on the micromorphology and electrochemical properties of the prepared electrodes. The performance ofNiPOH-x at.% RuO2 during the whole process of electrolyzing water was explored by the First-principles calculations. It’s shown that the RuO 2could change the morphology, and make the microspheres have a larger specific surface area. The Ni element was composed of Ni2+ and Ni 3+, and Ru consisted of Ru3+ and Ru 4+.The energy barriers for electron transfer were decreased after doping RuO2 to NiPOH, and the electron density near the Fermi level increased.When the current density was 10 mA/cm 2, the hydrogen overpotential was significantly reduced with the addition of RuO2 and the hydrogen overpotential of NiPOH-3 at.% RuO2 could reach the minimum of 93 mV, while the hydrogen overpotential of the NiPOH electrode was 161 mV. The Tafel slope of the oxygen evolution of NiPOH-3 at.% RuO 2 electrode could be the minimum at the same time. The hydrogen evolution process of the NiPOH- x at.% RuO2 electrode was a Volmer-Heyrovsky controlled reaction dominated by the Heyrovsky step.
参考文献/References:
[1].Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytichydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918.
[2].Tan H,Ge P, Shao Y, et al. Zn-Co-S coatings with a rough and porous nano-dendrite structure for high-performance asymmetric supercapacitors without binder[J]. Electrochimica Acta, 2022, 429: 141048.
[3].Li X, Elshahawy A M, Guan C, et al. Metal phosphides and phosphates-ased electrodes for electrochemical supercapacitors[J]. Small, 2017, 13(39): 1701530.
[4].Tan Y, Che Q, Li Q. Generating highly active Ni11(HPO3)8(OH)6/Mn3O4 catalyst for electrocatalytic hydrogen evolution reaction by electrochemical activation[J]. Journal of Colloid and Interface Science, 2020, 560: 714-721.
[5].Lv S, Sun Y, Liu D, et al. Construction of S-Scheme heterojunction Ni11(HPO3)8(OH)6/CdS photocatalysts with open framework surface for enhanced H2 evolution activity[J]. Journal of Colloid and Interface Science, 2023, 634: 148-158.
[6].Sun F, Tang Q, Jiang D. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction[J]. Acs Catalysis, 2022, 12(14): 8404-8433.
[7].Ma Y, Li Y, Zhang F, et al. Enhanced visible light photocatalytic hydrogen evolution by Ni cations precise institute S anion in CdS and P ions targeted linking with Ni[J]. Fuel: A Journal of Fuel Science, 2024: 355(1): 1-11.
[8].Perivoliotis D K, Ekspong J, Zhao X. Recent progress on defect-rich electrocatalysts for hydrogen and oxygen evolution reactions[J]. Nano Today, 2023, 50: 101883.
[9].Li B, Shi Y, Huang K, et al. Cobalt‐doped nickel phosphite for high performance of electrochemical energy storage[J]. Small, 2018, 14(13), 21703811.
[10].Shao Y, Feng K, Guo J, et al. Electronic structure and enhanced photoelectrocatalytic performance of RuxZn1?xO/Ti electrodes[J]. Journal of Advanced Ceramics, 2021, 10(5): 1025-1041.
[11].Yu F, Pang L, Wang H. Preparation of mulberry-like RuO2 electrode material for supercapacitors[J]. Rare Metals, 2021, 40(2): 440-447.
[12].Wang J, Ye T, Shao Y, et al. Flower-like nanostructured ZnCo2O4/RuO2 electrode materials for high performance asymmetric supercapacitors[J]. Journal of the Electrochemical Society, 2021, 168(12): 120553.
[13].Ge P, Tan H, Shao Y, et al. Electrochemical performance of MoO3-RuO2/Ti in H2SO4 electrolyte as anodes for asymmetric supercapacitors[J]. Electrochimica Acta, 2022, 429: 140984.
[14].Wang D, Jiao D, Gong M, et al. Nickel metaphosphate supported ruthenium for all pH hydrogen evolution: From single atom, cluster to nanoparticle[J]. Applied Catalysis B: Environmental, 2023, 325: 122331.
[15].Duvigneaud P H, Reinhard-Derie D. DTA study of RuO2 formation from the thermal decomposition of ruthenium(III) hydrate[J]. Thermochimica Acta, 1981, 51(2-3): 307-314.
[16].Wang V, Xu N, Liu J, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.
[17].Xu Z, Du C, Yang H, et al. NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors[J]. Chemical Engineering Journal, 2021, 421: 127871.
[18].Sydam R, Deepa M, Shivaprasad S M, et al. A WO3-poly(butyl viologen) layer-by-layer film/ruthenium purple film based electrochromic device switching by 1 volt application[J]. Solar Energy Materials and Solar Cells, 2015, 132: 148-161.
[19].Tu R, Lv W, Sun Y, et al. Ru-RuO2-Nb2O5/Hβ zeolite catalyst for high-active hydrogenation of lignin derivatives at room temperature[J]. Chemical Engineering Journal, 2023, 453: 139718.