Yin Weihua,Zhang Niuniu,Wang Haizhen*,et al.Effect of silane coupling agent on peel strength of RTF copper foil for high speed and high frequency plate[J].Plating & Finishing,2024,(12):101-106.
硅烷偶联剂对高速高频板用RTF铜箔剥离强度的影响
- Title:
- Effect of silane coupling agent on peel strength of RTF copper foil for high speed and high frequency plate
- Keywords:
- high-frequency and high-speed boards; low roughness; RTF copper foil; vinyl tri-methoxy silane
- 分类号:
- TQ153.1 文献标识:A
- 摘要:
- 随着信息化科技的飞速发展,高频高速板用铜箔正朝着低粗糙度和高剥离强度的方向发展,传统高粗糙度的标准铜箔(HTE)已不再满足要求,这就诞生了低粗糙度的反转铜箔(RTF)。RTF铜箔是对铜箔光面进行粗化处理,采用SEM、抗拉强度测试仪、剥离强度测试仪、粗糙度仪等来表征RTF铜箔物性,主要从硅烷偶联剂角度来提高RTF铜箔与高频高速板材(988G)之间的剥离强度。分别对含有氨基、环氧基、乙烯基及巯基的活性官能团硅烷进行研究,发现乙烯基三甲氧基硅烷(KBM-1003)与988G板材之间具有更高的黏结强度,当KBM-1003水溶液浓度为2 g/L、温度为25~35 ℃、pH值为3.0~4.0时,涂覆后的RTF铜箔与988G板材之间具有较高的剥离强度。
- Abstract:
- With the rapid development of information technology, the high-frequency and high-speed plate copper foil is developing towards the direction of low roughness and high peel strength, and traditional high roughness standard copper foil(HTE) no longer meets the requirements, which gives birth to the low roughness reverse treated copper foil(RTF). RTF copper foil coarses the smooth surface of copper foil. SEM, tensile strength tester, peel strength tester and roughness meter are used to characterize the physical properties of RTF copper foil. The peel strength between RTF copper foil and high-frequency high-speed plate (988G) is mainly improved from the Angle of silane coupling agent. The active functional silanes containing amino group, epoxy group, vinyl group and sulfhydryl group were studied respectively. It was found that vinyl tri- methoxysilane (KBM-1003) and 988G sheet have higher bond strength. When the concentration of KBM-1003 aqueous solution is 2 g/L, the temperature is 25 35 ℃, and the pH value is 3.04.0, the bond strength is higher. The coating RTF copper foil and 988G sheet have high peeling strength
参考文献/References:
[1].张杰, 钟鸿杰, 陈祥浩, 等. 一种应用于高频高速PCB的超低轮廓铜箔生产方法. 中国: CN116288544A[P], 2023-06-23.
[2].陈宾, 王海军, 张春阳. 超低轮廓压延铜箔表面处理生产工艺研究[J]. 广州化工, 2018, 46(2): 1-7.
[3].祝大同. 高速化覆铜板用铜箔的开发进展[J]. 覆铜板资讯, 2014(4): 15-18.
[4].祝大同. 高频高速PCB用铜箔技术与品种的新发展[J]. 印制电路资讯, 2019(1): 68-75.
[5].齐朋伟, 吕吉庆, 王小东, 等. 一种高速高频信号传输线路板用铜箔的表面处理方法. 中国: CN113973437[P], 2022-01-25.
[6].肖炳瑞, 黄永发, 余科淼, 等. 一种复合电镀液及高频PCB用低轮廓电解铜箔的制备方法. 中国: CN112708909A[P], 2021-04-27.
[7].王紫玉, 王洺浩, 孔德龙, 等. 镀锡板表面不同类型硅烷偶联剂膜的腐蚀防护性能[J]. 电镀与涂饰, 2019, 38(1): 32-37.
[8].Zuo X X, Zhu J, Muller B P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy,2017, 31: 113-143.
[9].武聪, 洪颖, 郭晓光. 偶联剂改性对铜箔抗剥强度及PTEF树脂基板性能的影响[J]. 塑料工业, 2023, 51(8):45-49.
[10].王雪明, 李爱菊, 李国丽, 等. 金属表面KH-560硅烷膜的粘结性能研究[J]. 机械工程材料, 2005,29(11): 8-10.
[11].陆冰沪, 李大双, 李琳穗,等. 铜箔表面硅烷化处理及其耐腐蚀性能[J]. 有色金属科学与工程, 2019, 10(1): 54-59.
[12].Meng X J, Zeng X M, Jiang W, et al. Silane coupling agent treated copper foil as s current collector for silicon anode [J]. Journal of Central South University. 2022, 29: 3620-3629.
[13].胡旭日, 王维河, 王海振, 等. 一种电解铜箔表面处理剂的制备方法. 中国: CN104099061A[P], 2014-10-15.
[14].王学江, 杨祥魁, 孙云飞, 等. 一种高频高速覆铜板用铜箔的表面处理剂. 中国: CN111364032A[P], 2020-07-03.
[15].王东海, 刘建广, 高平莉, 等. 一种高频高速覆铜板用铜箔的表面处理工艺及表面处理设备. 中国: CN115637474A[P], 2023-01-24.
[16].胡旭日, 王海振, 徐好强, 等. 无添加剂体系中电解铜箔的多步粗化[J]. 电镀与涂饰, 2015, 34(1): 20-24.
[17].张东, 石晨, 张晓鹤, 等. 电解铜箔表面低粗化处理方法. 中国: CN100591809C[P], 2010-02-24.
[18].郭立功. 新型电解铜箔表面锌镍复合镀处理工艺研究[J]. 世界有色金属, 2018, 14(2): 204-205.
[19].徐树民, 杨祥魁, 刘建广, 等. 挠性印制电路板用超低轮廓铜箔的表面处理工艺[J]. 电镀与涂饰, 2011,30(7): 28-33.