Lei Zhenjian,Li Yuting,Wang Wenkai.Experimental study on core mold removal method for electroforming capillaries Guo Xiaoyi, Ming Pingmei*, Yang Xiaohong, Yang Zheng,[J].Plating & Finishing,2024,(12):79-86.
电铸毛细管芯模选择与去除方法实验研究
- Title:
- Experimental study on core mold removal method for electroforming capillaries Guo Xiaoyi, Ming Pingmei*, Yang Xiaohong, Yang Zheng,
- Keywords:
- electroforming; capillary; mandrel removal
- 分类号:
- TQ153.4
- 文献标志码:
- A
- 摘要:
- 电铸技术在制造大长径比、超细高精金属管方面具有独特优势,芯模去除是该技术的关键工序。针对大长径比、超细高精金属管电铸后的芯模去除问题开展研究。实验研究评测了机械拉拔、化学溶解与低熔点合金熔化三种方法的脱模效果。在此基础上,研发出基于软质尼龙丝线芯模的热拉拔脱模法。研究结果表明,基于软质尼龙丝线芯模的热拉拔脱模法可快速脱除芯模,且对管壁损伤小、在管内无残留。基于此法,电铸制备出内径(100±0.5) μm、外径(300±0.5) μm、AR(长径比)约为200、管内壁表面粗糙度Ra为0.364 μm的大长径比、高内表面质量毛细金属管。
- Abstract:
- Electroforming technology has unique advantages in manufacturing large aspect ratio, ultrafine and high precision metal tubes, and core mold removal is the key process of this technology. The core mold removal after electroforming of large aspect ratio, ultrafine and high-precision metal tubes was investigated. Through experimental research, the mold removal effects of mechanical drawing method, chemical dissolution method and melting method were evaluated. On this basis, a hot pulling mold removal method based on soft nylon wire core mold was developed. The results show that the hot-drawing demolding method based on a soft nylon wire mandrel can quickly remove the mandrel, and there is little damage to the wall of the tube, no residue in the tube. Based on this method, a capillary metal tube with a large aspect ratio and high internal surface quality with an inner diameter of (100±0.5) μm, an outer diameter of (300±0.5) μm, an AR(length-to-diameter ratio) of about 200, and a surface roughness of the inner wall of the tube of 0.364 μm was prepared by electroforming.
参考文献/References:
[1].Hartl C. Review on advances in metal micro-tube forming[J]. Metals, 2019, 9(5): 542.
[2].Qin Y, Brockett A, Ma Y, et al. Micro-manufacturing: Research, technology outcomes and development issues[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47: 821-837.
[3].Prakash S, Kumar S. Fabrication of microchannels: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229(8): 1273-1288.
[4].Celentano D J, Rosales D A, Pena J A. Simulation and experimental validation of tube sinking drawing processes[J]. Materials and Manufacturing Processes, 2011, 26(5): 770-780.
[5].Yang X, Sun S, Zhou Z, et al. Continuous extrusion forming technology of magnesium alloy thin-walled tubules[J]. Materials, 2023, 16(17): 5803.
[6].Li S, Jie X, Yin Y, et al. Mechanism of internal surface crack formation of seamless modified 9Cr-1Mo steel tube rolled by mandrel mill and its application[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 273-276.
[7].刘新华, 谢建新. 一种铜/铝双金属毛细管的制备方法[P]. 中国专利: 201410105982.0, 2016-08-31.
[8].Yao X, Liu J, Liang H, et al. Investigation of forming optimization of composite tubes based on liquid impact forming[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(3): 1089-1102.
[9].Zhan X F, Cao Q D, Trieu K, et al. Microstructure and mechanical properties of copper microtubes fabricated via the electroforming process[J]. Journal of Materials Engineering and Performance, 2020, 29: 1741-1750.
[10].Qin Y. Micro-forming and miniature manufacturing systems—Development needs and perspectives[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 8-18.
[11].McGeough J A, Leu M C, Rajurkar K P, et al. Electroforming process and application to micro/macro manufacturing[J]. CIRP Annals, 2001, 50(2): 499-514.
[12].范嘉杰, 钱双庆, 付新峰, 等. 镍钴双阳极对电铸合金铸层性能的影响[J]. 有色金属工程, 2023, 13(12): 37-42.
[13].李学良. 电铸镍与树脂基复合材料连接工艺基础研究[D]. 南京: 南京航空航天大学, 2021.
[14].Zhang Y, Zhu Y, Cai H, et al. Coexistent improvement of thermal and mechanical performance at Si/Cu joint by thickness-controlled Sn-Ag bond layer[J]. Journal of Manufacturing Processes, 2023, 101: 104-113.
[15].Zhao Z, Zhu P, Yang L, et al. Effect of dislocation density on adhesion strength of electroforming Ni layer on Cu substrate[J]. Journal of Adhesion Science and Technology, 2019, 33(3): 301-313.
[16].袁诗璞. 第十三讲──镀层的结合力(一)[J]. 电镀与涂饰, 2009, 28(8): 44-46.
[17].王日鑫, 明平美, 闫亮, 等. 一种用于脱模的真空夹具[P]. 中国专利: 202020904144.0, 2021-01-05.
[18].明平美, 王日鑫, 闫亮, 等. 一种用于电铸大长径比薄壁无缝金属管的脱模装置与方法[P]. 中国专利: 202010094943.0, 2020-05-05.
[19].小田德治. Electrocast tube producing method, electrocast tube and thin wire material for production of electrocast tubes[P]. 世界专利: 2005090645AI. 2005-09-29.
[20].佐々木浩二. エンドレスベルトの製造装置及びその製造方法[P]. 世界专利: 2006213960A1. 2006-08-17.
[21].Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities[J]. International Journal of Molecular Sciences, 2011, 12(7): 4250-4270.
[22].陶金. 高强度电铸连接基础试验研究[D]. 南京: 南京航空航天大学, 2020.
[23].王红云, 钟四姣. 金属铝的溶解性实验研究[J]. 化工中间体, 2009, 5(6): 37-39.