PDF下载 分享
[1]涂敏,陈息坤.还原氧化石墨烯合成及在锂离子电池中应用[J].电镀与精饰,2024,(12):40-47.
 Tu Min *,Chen Xikun.Synthesis of SnS2/reduced graphene oxide and its application in lithium ion batteries[J].Plating & Finishing,2024,(12):40-47.
点击复制

还原氧化石墨烯合成及在锂离子电池中应用

参考文献/References:

[1].巩鹏妮, 弓巧娟, 梁云霞, 等. 镍钴硫化物、石墨烯与聚苯胺复合材料在超级电容器中的应用研究进展[J].电镀与精饰, 2023, 45(3): 90-94.
[2].Huang J, Xu H, Pei Y R, et al. Controlled morphology significantly enhances electrochemical performance of LaNiO3-NiO anodes for Li-ion batteries[J]. Materials Today Communications, 2024, 40: 109497.
[3].Abbasi M, Frank I,Nadimi E.Doping engineering in MoS 2 as the cathode-host in lithium-sulfur batteries: A first principles investigation[J]. Journal of Energy Storage, 2024, 95: 112555.
[4].Qu J Y, Ren Z J, Yan L, et al. Mixed crystal FeFx submicron spheres loaded on fluorinated graphene as cathode materials for Lithium-Ion batteries[J]. Journal of Electroanalytical Chemistry, 2024, 960: 118195.
[5].Zhu B N, Liu D D, Zhong B, et al. NiSe 2/CoSe2 heterostructure nanoparticles anchoring on graphene for enhanced Li-ions storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 688: 133685.
[6].Xu P, Wang X D, Guo D R, et al. Flower-like carbon spheres formed by self-assembly of nitrogen-doped porous nanoribbons to boost SnS 2 nanosheets for advanced lithium storage[J]. Diamond & Related Materials, 2024, 143: 110936.
[7].Ping X, Liao M D, Wang X D, et al. Honeycomb substrate carbon and nitrogen-doped coated carbon synergistically boost SnS/ZnS for efficient lithium storage[J]. Materials Letters, 2024, 357: 135710.
[8].Wei H, Min Q, Xun H, et al. Formamide-assisted synthesis of SnS2 nanosheets for high capacity and stable Li-ion battery[J ].Journal of Solid State Chemistry, 2024, 330: 124456.
[9].Wang J H, Zheng J D, Gao L P, et al. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage[J]. Frontiers of Materials Science , 2023, 17(3): 230654.
[10].Chen L, Ma K, Zhou L L, et al. Confining ultrafine SnS2 nanoparticles into MXene interlayer toward fast and stable lithium storage[J]. Chemical Engineering Science, 2022, 247: 117087.
[11].Yin L X, Li H M, Cheng R L, et al. Controllable synthesis of SnS2 nanoflakes as high-performance anode for lithium-ion batteries[J ].Journal of Materials Science: Materials in Electronics, 2021, 32(1): 191-203.
[12].Jin C Q, Wei Y X, Nan R H, et al. C@SnS 2 core-shell 0D/2D nanocomposite with excellent electrochemical performance as lithium-ion battery anode[J]. Electrochimica Acta, 2024, 476: 143747.
[13].Xu Z X, Lu W H, Zhang T, et al. Metal-organic framework-derived SnS2/C/CNT as anode material for lithium-ion batteries with high capacity and stability[J]. Energy Technology, 2023, 12(1): 21-26.
[14].Ji J W, Zhou Z, Fu K, et al. Enhanced Li+ storage through highly hybridized networks of self-assembled SnS 2/rGO aerogels[J ].Journal of Alloys and Compounds, 2020, 828: 154192.
[15].肖彬, 谢泽林, 吴刚, 等. 纳米SnS2/Sb2S3@G异质结的构筑及其储锂性能[J]. 中国有色金属学报, 2023, 33(7): 2210-2221.
[16].Yu Z, Li X, Yan B, et al. Rational design of flower-like tin sulfide @ reduced graphene oxide for high performance sodium ion batteries[J]. Materials Research Bulletin, 2017, 96: 516-523.
[17].Wang H, Robinson J T, Li X, et al. Solvothermal reduction of chemically exfoliated graphene sheets[J]. Journal of the American Chemical Society, 2009, 131(29): 9910-9911.
[18].Munisamy M, Hassan Z, Perumal N, et al. Flower-like SnS 2/honeycomb-like g-C3N4 composite as an anode material for high-rate, long-term lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107894.
[19].Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.

更新日期/Last Update: 2024-12-18