Tu Min *,Chen Xikun.Synthesis of SnS2/reduced graphene oxide and its application in lithium ion batteries[J].Plating & Finishing,2024,(12):40-47.
还原氧化石墨烯合成及在锂离子电池中应用
- Title:
- Synthesis of SnS2/reduced graphene oxide and its application in lithium ion batteries
- Keywords:
- SnS2; reduction of graphene oxide; lithium ion battery; electrochemical performance; battery anode material
- 分类号:
- TQ317
- 文献标志码:
- A
- 摘要:
- 通过水热法制备了SnS2/还原氧化石墨烯(SnS2/RGO)复合材料,采用X射线衍射谱(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和N2吸附-脱附表征SnS2/RGO复合材料的物相晶型、化学基团、元素组成和比表面积与孔隙孔径。SnS2/RGO复合材料作为锂离子电池负极材料组装纽扣电池。结果表明:电流密度100 mA/g条件下,SnS2/RGO复合材料的充放电比容量明显高于纯SnS2,SnS2/RGO复合材料第一次放电比容量高达2803 mAh/g,表现出优异的电化学性能。循环100次后放电比容量仍然可以达到941 mAh/g,而循环100次后纯SnS2的放电比容量远低于SnS2/RGO复合材料,仅为198 mAh/g,表现出良好的循环稳定性。1 000 mA/g的高电流密度下,SnS2/RGO复合材料放电比容量依然可以达到696 mAh/g,表现出良好的倍率性能。
- Abstract:
- SnS2/reduced graphene oxide (SnS2/RGO) composites were prepared by hydrothermal method. The phase, chemical groups, elemental composition, specific surface area and pore size of SnS2/RGO composites were characterized by X-ray diffraction spectroscopy(XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption. SnS 2/RGO composites were used as anode materials for lithium ion batteries to assemble button batteries. The results show that the charge-discharge specific capacity of SnS2/RGO composite is significantly higher than that of pure SnS2 at a current density of 100 mA/g. The first discharge specific capacity of SnS 2/RGO composite is as high as 2 803 mAh/g, showing excellent electrochemical performance. After 100 cycles, the discharge specific capacity can still reach 941 mAh/g, while the discharge specific capacity of pure SnS2 is much lower than that of SnS 2/RGO composite after 100 cycles, only 198 mAh/g, showing good cycle stability. At a high current density of 1 000 mA/g, the discharge specific capacity of SnS2/RGO composite can still reach 696 mAh/g, showing good rate performance
参考文献/References:
[1].巩鹏妮, 弓巧娟, 梁云霞, 等. 镍钴硫化物、石墨烯与聚苯胺复合材料在超级电容器中的应用研究进展[J].电镀与精饰, 2023, 45(3): 90-94.
[2].Huang J, Xu H, Pei Y R, et al. Controlled morphology significantly enhances electrochemical performance of LaNiO3-NiO anodes for Li-ion batteries[J]. Materials Today Communications, 2024, 40: 109497.
[3].Abbasi M, Frank I,Nadimi E.Doping engineering in MoS 2 as the cathode-host in lithium-sulfur batteries: A first principles investigation[J]. Journal of Energy Storage, 2024, 95: 112555.
[4].Qu J Y, Ren Z J, Yan L, et al. Mixed crystal FeFx submicron spheres loaded on fluorinated graphene as cathode materials for Lithium-Ion batteries[J]. Journal of Electroanalytical Chemistry, 2024, 960: 118195.
[5].Zhu B N, Liu D D, Zhong B, et al. NiSe 2/CoSe2 heterostructure nanoparticles anchoring on graphene for enhanced Li-ions storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 688: 133685.
[6].Xu P, Wang X D, Guo D R, et al. Flower-like carbon spheres formed by self-assembly of nitrogen-doped porous nanoribbons to boost SnS 2 nanosheets for advanced lithium storage[J]. Diamond & Related Materials, 2024, 143: 110936.
[7].Ping X, Liao M D, Wang X D, et al. Honeycomb substrate carbon and nitrogen-doped coated carbon synergistically boost SnS/ZnS for efficient lithium storage[J]. Materials Letters, 2024, 357: 135710.
[8].Wei H, Min Q, Xun H, et al. Formamide-assisted synthesis of SnS2 nanosheets for high capacity and stable Li-ion battery[J ].Journal of Solid State Chemistry, 2024, 330: 124456.
[9].Wang J H, Zheng J D, Gao L P, et al. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage[J]. Frontiers of Materials Science , 2023, 17(3): 230654.
[10].Chen L, Ma K, Zhou L L, et al. Confining ultrafine SnS2 nanoparticles into MXene interlayer toward fast and stable lithium storage[J]. Chemical Engineering Science, 2022, 247: 117087.
[11].Yin L X, Li H M, Cheng R L, et al. Controllable synthesis of SnS2 nanoflakes as high-performance anode for lithium-ion batteries[J ].Journal of Materials Science: Materials in Electronics, 2021, 32(1): 191-203.
[12].Jin C Q, Wei Y X, Nan R H, et al. C@SnS 2 core-shell 0D/2D nanocomposite with excellent electrochemical performance as lithium-ion battery anode[J]. Electrochimica Acta, 2024, 476: 143747.
[13].Xu Z X, Lu W H, Zhang T, et al. Metal-organic framework-derived SnS2/C/CNT as anode material for lithium-ion batteries with high capacity and stability[J]. Energy Technology, 2023, 12(1): 21-26.
[14].Ji J W, Zhou Z, Fu K, et al. Enhanced Li+ storage through highly hybridized networks of self-assembled SnS 2/rGO aerogels[J ].Journal of Alloys and Compounds, 2020, 828: 154192.
[15].肖彬, 谢泽林, 吴刚, 等. 纳米SnS2/Sb2S3@G异质结的构筑及其储锂性能[J]. 中国有色金属学报, 2023, 33(7): 2210-2221.
[16].Yu Z, Li X, Yan B, et al. Rational design of flower-like tin sulfide @ reduced graphene oxide for high performance sodium ion batteries[J]. Materials Research Bulletin, 2017, 96: 516-523.
[17].Wang H, Robinson J T, Li X, et al. Solvothermal reduction of chemically exfoliated graphene sheets[J]. Journal of the American Chemical Society, 2009, 131(29): 9910-9911.
[18].Munisamy M, Hassan Z, Perumal N, et al. Flower-like SnS 2/honeycomb-like g-C3N4 composite as an anode material for high-rate, long-term lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107894.
[19].Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.