Li Jianlong * Liu Wenbo Zhang Zhichao.Multi-element doping inhibits the accumulation of internal stress in cathode material[J].Plating & Finishing,2024,(11):49-57.
多元素掺杂抑制正极材料的内应力积累
- Title:
- Multi-element doping inhibits the accumulation of internal stress in cathode material
- Keywords:
- high nickel layer oxide ; energy density ; synergistic doping strategy ; phase change ; internal stress
- 分类号:
- TM 911
- 文献标志码:
- A
- 摘要:
- 高镍层状氧化物 LiNi x Mn y Co 1 - x - y O 2 ( NCM , x ≥ 0.8 )由于其高的能量密度和低廉的成本是锂离子电池( LIBs )最有前途的正极材料之一。提高 NCM 镍含量和截止电压可以提升正极材料的实际放电比容量,然而,高镍含量导致其表面残留大量的锂化合物,影响界面处锂离子的传输;同时长循环过程中产生的 HF 会溶解层状晶体结构中的过渡金属离子,使其电化学性能变差,严重阻碍了 NCM 大规模的实际应用。改善 NCM 的结构不稳定性可以通过掺杂来实现,在此,提出了一种协同掺杂改性策略,在 NCM 晶体内部同时掺杂 Ta 、 Ti 和 Mg 元素, 3 种元素的协同作用抑制了不可逆相变的发生,缓解了晶体内应力的积累。 Ta@Ti@Mg 改性的 NCM 在 2.75 ~ 4.60 V , 0.5 C 循环 100 次后放电比容量为 175.5 mAh/g ,该协同掺杂策略为其它正极材料的改性提供了借鉴作用。
- Abstract:
- : High-nickel layered oxide LiNi x Mn y Co 1 - x - y O 2 ( NCM , x ≥ 0.8 ) is one of the most promising cathode materials for lithium-ion batteries ( LIBs ) due to its high energy density and low cost. Increasing nickel content and cut-off voltage of NCM can improve the actual specific discharge capacity of cathode materials. However , high nickel content leads to a large number of lithium compounds remaining on the surface , which affects the transmission of lithium ions at the interface. At the same time , HF produced in the long cycle process will dissolve the transition metal ions in the layered crystal structure , making its electrochemical performance worse , which seriously hinders the practical application of NCM on a large scale. The structural instability of NCM can be improved by doping. Here , we report a synergistic doping modification strategy , in which Ta , Ti and Mg are doped inside NCM crystals at the same time. The synergistic effect of the three elements inhibits the occurrence of irreversible phase transition and alleviates the accumulation of internal stress in the crystals. The specific discharge capacity of Ta@Ti@Mg modified NCM is 175.5 mAh/g after 100 cycles of 2.75?4.60 V and 0.5 C . This collaborative doping strategy provides a reference for the modification of other cathode electrode materials.
参考文献/References:
[1] 魏诗诗 , 侯顺丽 , 周庚 , 等 . 高镍三元材料的掺杂改性研究及展望 [J]. 化工新型材料 , 2023, 51(3): 58-62.
[2] 贲留斌 , 武怿达 , 朱永明 , 等 . 一代材料 , 一代电池 : 正极材料研究推动锂离子动力电池的升级换代 [J]. 物理 , 2022, 51(6): 373-383.
[3] Jiang M, Danilov D L, Eichel R A, et al. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(48): 2103005.
[4] Wang Z H, Zhu H W, Yu H F, et al. Complementary dual-doping of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode enhances ion-diffusion and stability for Li-ion batteries[J]. Chinese Chemical Letters, 2023, 34(6): 107718.
[5] Ge X R, Yu J, Zhu L H, et al. Irreversible transition from GaO 6 octahedra to GaO 4 tetrahedra for improved electrochemical stability in Ga-doped LiNi 0.9 Co 0.1 O 2 [J]. Inorganic Chemistry, 2021, 60(5): 3015-3024.
[6] Zhang Y D, Liu J D, Xu W C, et al. Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries[J]. Journal of Power Sources, 2022, 535: 231445.
[7] Tang W J, Li A F, Zhou G J, et al. Structural stabilization of cation-disordered rock-salt cathode materials: Coupling between a high-ratio inactive Ti 4+ cation and a Mn 2+ /Mn 4+ two-electron redox pair[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38865-38874.
[8] Yang X, Tang Y W, Shang G Z, et al. Enhanced cyclability and high-rate capability of LiNi 0.88 Co 0.095 Mn 0.025 O 2 cathodes by homogeneous Al 3+ Doping[J]. ACS Applied Materials & Interfaces, 2019, 11: 32015-32024.
[9] 张德柳 , 张言 , 王海 , 等 . 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料 [J]. 储能科学与技术 , 2023, 12(2): 339-348.
[10] Shen Y B, Xue H J, Wang S H, et al. A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 597: 334-344.
[11] Zhang X H, Cui Z H, Jo E, et al. Inhibition of transitionmetal dissolution with advanced electrolytes in batteries with silicongraphite anodes and high-nickel cathodes[J]. Energy Storage Materials, 2023, 56: 562-571.
[12] Park G T, Namkoong B, Kim S B, et al. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries[J]. Nature Energy, 2022, 7(10): 946-954.
[13] Park N Y, Park G T, Kim S B, et al. Degradation mechanism of Ni-rich cathode materials: Focusing on particle interior[J]. ACS Energy Letters, 2022, 7(7): 2362-2369.
[14] Li J X, Liang G M, Zheng W, et al. Addressing cation mixing in layered structured cathodes for lithiumion batteries: A critical review[J]. Nano Materials Science, 2023, 5(4): 404-420.
[15] Nam G W, Park N Y, Park K J, et al. Capacity fading of Ni-Rich NCA cathodes: Effect of microcracking extent[J]. ACS Energy Letters, 2019, 4: 2995-3001.
[16] Bi Y J, Tao J H, Wu Y Q, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science, 2020, 370: 1313-1317.
[17] Zhao R R, Yang Z L, Liang J X, et al. Understanding the role of Na-doping on Ni-rich layered oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 [J]. Journal of Alloys and Compounds, 2016, 689: 318-325.
[18] Qiu L, Zhang M K, Song Y, et al. Origin and regulation of interface fusion during synthesis of single-crystal Ni-rich cathodes[J]. Angewandte Chemie International Edition, 2023, 62: 202300209.
[19] Wu F, Liu N, Chen L, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano Energy, 2019, 59: 50-57.
[20] Xu Y, Jiao L, Ma J L, et al. Metal organic frameworks for nanoconfinement of chlorine in rechargeable lithium-chlorine batteries[J]. Joule, 2023, 7: 515-528.
[21] Wu F X, Maier J, Yu Y. Guidelines and trends for next generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49: 1569-1614.
备注/Memo
基金项目: 国家自然科学基金资助项目( 52175123 )中文 收稿日期: 2024-07-02 修回日期: 2024-07-16 作者简介: 李建龙 ( 1982 ─ )男,硕士,高级工程师,研究方向为轨道交通新能源材料, email : lijianlong@zzrvtc.edu.cn
作者简介:;河南省科技攻关课题( 242102210171 ) 多元素掺杂抑制正极材料的内应力积累 李建龙 * ,刘文博, 张志超