Xiao Chunfang*,Han Bing,Xie Zhen.Research progress on magnetic grinding technology for the inner surface of aircraft engine bend[J].Plating & Finishing,2024,(12):91-100.
航空发动机弯管内表面磁力研磨技术的研究进展
- Title:
- Research progress on magnetic grinding technology for the inner surface of aircraft engine bend
- Keywords:
- aircraft engine bend pipe; magnetic particle grinding mechanism; process parameters; impact assessment; developing trends
- 分类号:
- TG580.68
- 文献标志码:
- A
- 摘要:
- 航空发动机弯管的内表面质量影响发动机的整体性能和安全。磁粒研磨具有无须专用加工设备、精度高、柔性和仿形性好、易于实现自动化等优势,有望成为航空发动机弯管内表面精密加工的主要技术途径。介绍了磁粒研磨的方法和机理,总结了聚磁装置对磁粒研磨的影响,各因素及交互作用因素对表面粗糙度和材料去除的影响。提出了基于开槽磁极的离散法提高磁粒研磨精度和效率和基于遗传算法优化的BP神经网络预测最佳航空发动机弯管磁粒研磨工艺参数的优化思路,并归纳了磁粒研磨效果评价方法。列举了磁粒研磨技术在航空发动机弯管内表面精密加工中的应用,并对航空发动机弯管内表面磁力研磨技术的发展趋势进行了展望。
- Abstract:
- As a core component of the aviation engine piping system, the quality of the inner surface of the bent pipe determines the overall performance and safety of the engine. Magnetic abrasive grinding has advantages such as no need for specialized processing equipment, high precision, good flexibility and profiling, and easy automation. It is expected to become the main technical approach for precision machining of the inner surface of aircraft engine bent pipes. It introduced the methods and mechanisms of magnetic particle grinding, summarizes the effects of magnetic pole shape, magnetic pole head taper, and magnetic pole slotting on magnetic particle grinding, as well as the effects of process parameters such as working gap, speed, mixing ratio, and mesh number on surface roughness and material removal. It was proposed that discrete method based on slotted magnetic poles to improve the precision and efficiency of magnetic particle grinding. It was proposed that optimization approach based on genetic algorithm optimized BP neural network to predict the optimal magnetic particle grinding process parameters for aircraft engine bend pipes. The evaluation method for magnetic particle grinding effect was summarized. It listed the application of magnetic particle polishing technology in precision machining of the inner surface of aircraft engine bends, and looked forward to the development trend of magnetic particle polishing technology for the inner surface of aircraft engine bends
参考文献/References:
[1].周传强, 韩冰, 肖春芳, 等. 磁性磨粒辅助磁针磁力研磨的应用研究[J]. 表面技术, 2019, 48(3): 275-282.
[2].刘宁, 张桂香, 陈昊鑫, 等. 基于响应曲面法的磁力研磨310S不锈钢参数优化[J]. 电镀与精饰, 2023, 45(6): 77-83.
[3].陈燕, 李龙邦, 曾加恒, 等. 航空发动机钛合金导管内表面精密研磨试验研究[J]. 航空制造技术, 2018, 61(9): 40-46.
[4].张祥, 马小刚, 张亮, 等. 脱合金法在 TC4 钛合金磁粒研磨光整加工中的应用[J]. 中国表面工程, 2023, 36(2): 189-199.
[5].赵杨. 弯管内表面质量均匀性控制工艺研究[D]. 鞍山: 辽宁科技大学, 2020.
[6].陈燕. 磁粒研磨加工技术及应用[M]. 北京: 科学出版社, 2021: 35-52.
[7].刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展[J]. 表面技术, 2021, 50(1): 47-61.
[8].潘明诗, 陈燕, 张东阳, 等. 仿形磁极头对电磁研磨管件内表面形成的影响[J]. 中国表面工程. 2022, 35(6): 274-285.
[9].崔运涛, 张桂香, 崔同磊, 等. 磁力研磨75 °梯形开槽永磁极研究[J]. 制造技术与机床, 2020(8): 109-113.
[10].Saichaitanyakishore D, Jameel Basha S M. Optimization of process parameters in surface finishing of Al6061 by using magnetic abrasive finishing process[J]. Materials Today: Proceedings, 2019(18): 3365-3370.
[11].Heng L, Kim J S, Tu J, et al. Fabrication of precision meso-scale diameter ZrO2 ceramic bars using new magnetic pole designs in ultra-precision magnetic abrasive finishing[J]. Ceramics international, 2020, 46(11): 17335-17346.
[12].Li W, Chen Y, Cheng M, et al. Fabrication of precision meso-scale diameter ZrO2 ceramic bars using new magnetic pole designs in ultra-precision magnetic abrasive finishing[J]. Materials, 2020, 13(6): 1401-1407.
[13].孙岩, 潘明诗, 陈燕, 等. 仿形组合磁极研磨增材制造复杂表面工艺研究[J]. 表面技术, 2023, 52(6): 361-368.
[14].崔同磊. 球形磁性磨粒磁力光整铜基合金材料去除机理及表面质量研究[D]. 淄博: 山东理工大学, 2022.
[15].潘明诗, 陈燕, 程海东, 等. 基于线圈优化设计的黄铜管内表面电磁抛光试验[J]. 表面技术, 2022, 51(9): 260-270.
[16].李毓滦, 曲禹鑫, 韩冰, 等. 磁粒研磨中磁性磨料的动力学行为仿真研究[J]. 电镀与精饰, 2024, 46(2): 107-112.
[17].喻正好, 韩冰, 陈松, 等. 钛合金空间弯管磁粒研磨工艺参数分析[J]. 表面技术, 2018, 47(4): 183-189.
[18].崔子含, 高慧敏, 陈燕, 等. 基于离散元法的磁性磨粒干压成型工艺参数优化[J]. 金刚石与磨料磨具工程. 2024, 44(1): 57-65.
[19].Chaudhari Ashokkumar R, Judal Kesarabhai B. Experimental investigation of electro-chemical magnetic abrasive finishing of SS 304 workpiece[J]. Materials Today: Proceedings, 2022, 49(2): 390-396.
[20].焦安源, 全洪军, 陈燕, 等. 超声磁力复合研磨钛合金锥孔的试验研究[J]. 机械工程学报, 2017, 53(19): 114-119.
[21].Heng L, Kim J, Sang D M. Review of superfinishing by the magnetic abrasive finishing process[J]. High Speed Machining, 2022, 3(1): 42-55.
[22].Gao Y, Zhao Y, Zhang G, et al. Modeling of material removal in magnetic brasive finishing process with spherical magnetic abrasive powder[J]. International Journal of Mechanical Sciences, 2020(177): 1056-1059.
[23].周传强, 韩冰, 胡玉刚. 基于灰关联理论的磁力研磨工艺参数优化[J]. 电镀与精饰, 2019, 41(3): 15-21.
[24].张祥, 马小刚, 韩冰. 基于无理数转速比的导磁轴套磁粒研磨试验[J]. 表面技术, 2022, 51(12): 269-276.
[25].肖春芳, 韩冰. 超声辅助磨削加工碳纤维复合材料的磨削力分析[J]. 机械设计与研究. 2018, 34(5): 140-142, 151.
[26].Xiao C F, Han B. Research and design of ultra-long ultrasonic horn[J]. Journal of The Institution of Engineers (India): Series C, 2019, 100(6): 1015-1022.
[27].杜嘉静. 磁力光整加工高性能不锈钢材料去除机理及表面质量评价[D]. 淄博: 山东理工大学, 2022.
[28].徐良, 陈燕, 韩冰, 等. 基于进化神经网络的磁粒研磨表面粗糙度预测方法研究[J]. 表面技术, 2021, 50(12): 94-100, 118.
[29].刘冬冬. 石英玻璃管内表面精密研磨工艺研究[D]. 鞍山: 辽宁科技大学, 2020.
[30].Anjaneyulu K, Venkatesh G. A review on experimental investigation of magnetic abrasive finishing process[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1145(1): 12-66.
[31].徐进文, 胡菁华, 等. 弯管磁粒研磨的差异化加工工艺试验研究[J]. 金刚石与磨料磨具工程. 2022, 42(4): 481-487.
[32].Vermag C, Kala P, Pandey M. Experimental investigations into internal magnetic abrasive finishing ofpipes[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(8): 1657-1668.
[33].王哲. 18CrNiMo7-6钢V型缺口圆形截面试样磁力研磨工艺的研究[D]. 河南: 郑州大学, 2020.
[34].Muhamad M R, Jamaludin M F, Karim M S A, et al. Effects of electrolysis on magnetic abrasive finishing of AA6063-T1 tube internal surface using combination machining tool[J]. Material Sissen Schaftund Werkstofftechnik, 2018, 49(4): 442-452.
[35].吴淑晶, 王大中, 谷顾全, 等. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报. 2024, 60(1): 1-16.
[36].刘宁, 赵玉刚, 高跃武, 等. CBN磁性磨料磁力研磨TC4钛合金工艺参数优化[J]. 组合机床与自动化加工技术, 2020(3): 131-135.
[37].Guo J, Au K H, Goh M H, et al. Novel rotating-vibrating magnetic abrasive polishing method for double-layered internal surfacefinishing[J]. Journal of Materials Processing Technology, 2019(2): 422-437.
[38].张志鹏, 陈燕, 潘明诗, 等. 基于Hilbert 曲线磁粒研磨轨迹均匀性实验研究[J]. 表面技术, 2022, 8(8): 408-417.
[39].钱之坤. 交变磁场辅助磁力研磨钛合金管内表面试验研究[D]. 鞍山: 辽宁科技大学, 2020.
[40].Wang L Y, Sun Y L, Chen F Y, et al. Modeling and simulation of the action mechanism of multi-particles in magnetic abrasive finishing for internal blind cavity using the discrete element method[J]. The International Journal of Advanced Manufacturing Technology. 2023, 125(3): 1179-1192.
[41].Fu Y, Yao J J, Zhao H H, et al. Simulation of abidisperse magnet orheological fluid using the combination of a two-component lattice boltzmann method and a discrete element approach[J]. Soft Matter. 2019, 15(34): 6867-6877.
[42].马付建, 普斌, 刘鑫, 等. 钛合金超声辅助磁性磨料光整加工工艺优化[J]. 航空制造技术, 2022, 65(8): 47-52.
[43].Song Y K, Lei Z J, Lu X, et al. Optimization of a lobed mixer with BP neural network and genetic algorithm [J]. Journal of Thermal Science, 2022, 32(1): 387-400.
[44].王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31-35.
[45].李文龙, 陈燕, 赵杨, 等. 采用神经网络和遗传算法优化磁粒研磨TC4弯管工艺参数[J].表面技术, 2020, 49(6): 330-336.
[46].程淼, 陈松, 徐进文, 等. 基于廓形识别的弯管内表面精密磨削试验研究[J]. 表面技术, 2021, 50(11): 372-382.
[47].宋壮, 赵玉刚, 刘广新, 等. 基于WOA–LSSVM的磁粒研磨表面粗糙度预测及工艺参数优化[J]. 表面技术, 2023, 52(1): 242-252, 297.
[48].刘孝保, 严清秀, 姚廷强, 等. 基于集成学习和改进粒子群算法的流程工艺参数优化[J].中国机械工程, 2023, 1(1): 1-14.
[49].李奎. 磁粒研磨加工过程的离散元仿真分析[D]. 鞍山: 辽宁科技大学, 2021.
[50].张桂冠, 孙玉利, 范武林. 钛合金加工表面完整性的研究现状与展望[J]. 航空制造技术, 2022, 65(4): 36-55, 79.
[51].陈晓明, 徐成宇, 朱永伟, 等. 基于混合粒径的TC4钛合金低粗糙度磁力研磨研究[J]. 表面技术, 2023, 52(12): 112-118, 159.
[52].耿士雄. 面向磁力研磨的磁性介质驱动机理研究[D]. 武汉: 华中科技大学, 2022.
[53].陈燕, 赵杨, 陈松, 等. 基于旋转磁场的6061铝合金弯管内表面光整加工[J]. 中国表面工程, 2018, 31(5): 73-81.
[54].李龙邦. 基于旋转磁场的6061铝合金弯管内表面光整加工[D]. 鞍山: 辽宁科技大学, 2019.
[55].杨海吉. Φ4×150mm细长管内表面磁力研磨精密光整试验研究[D]. 鞍山: 辽宁科技大学, 2018.
[56].刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展[J]. 航空制造技术, 2021,50(1): 47-61.
[57].李文龙. 钛合金丝表面精密磁力研磨工艺及试验研究[D]. 鞍山: 辽宁科技大学, 2019.
[58].李刚. 细长管内表面磁力研磨光整及表面粗糙度预测模型建立[D]. 鞍山: 辽宁科技大学, 2019.
[59].施凯博. 钛合金格栅磨粒流光整加工技术研究[D]. 南京: 南京航空航天大学, 2020.