Wu Yu,Tian Jihong*,Tang Fangyu,et al.Error analysis of measurements of main salt content in copper electroplate baths by fluorescence spectrometry[J].Plating & Finishing,2024,(12):120-128.
荧光光谱法测定镀铜溶液主盐含量的误差分析
- Title:
- Error analysis of measurements of main salt content in copper electroplate baths by fluorescence spectrometry
- Keywords:
- fluorescence spectrometry; chemical titration method; rapid analysis; paired two-sample t test; electroplate baths
- 分类号:
- O655.25
- 文献标志码:
- A
- 摘要:
- 通过无标样法对荧光光谱曲线进行校准,采用校准后的曲线快速分析酸性硫酸铜和HEDP络合物铜电镀液的主盐Cu2+含量,并借助于成对二样本t检验将其与化学滴定法的测试结果进行比较。研究结果表明,两种分析方法对单盐体系镀液和络合物体系镀液的测量结果的相对误差范围分别为?3.96%~3.24%和3.01%~4.99%,均在工艺容许范围以内。相比于化学滴定法,荧光光谱法的测量结果的精密度更高,速度更快,操作更加简便,且校准后的测试结果可以进一步逼近真值。
- Abstract:
- The fluorescence spectrum curves were calibrated by the non-standard sample method, and then the main salt Cu2+ content of the acid copper sulfate bath and the HEDP complex copper bath was analyzed by the calibrated curve rapidly. The results were compared with those of the chemical titration method by the paired two-sample t test, they showed that the relative error ranges between the two analytical methods for the single salt system and the complex system are ?0.36%±3.6% and 0.99%±4.0%, respectively, which are within the allowed ranges of the process. The measurement results of fluorescence spectrometry have higher precision, faster speed and simpler operation compared with the chemical titration method, while the test results could further approach the true value after being calibrated.
参考文献/References:
[1].方景礼. 电镀添加剂理论与应用[M]. 北京: 国防工业出版社, 2006: 86-94.
[2].刘志恒, 王春霞, 田礼熙, 等. 预浸对烧结钕铁硼HEDP电镀铜的影响[J]. 电镀与涂饰, 2024, 43(1): 24-34.
[3].Ji Z H, Tian L X, Jin Y C, et al. Electrodeposition of compact cadmium deposits in the non-aqueous ethylene glycol solution modified with ethanol[J]. Electrochimica Acta, 2024, 475: 143695.
[4].刘仁志. 现代工艺手册[M]. 北京: 化学工业出版社, 2010: 243-247.
[5].郭蒙, 潘晓茹, 石雅茹, 等. 紫外光谱法测定印制线路板废水中的铜[J]. 分析试验室, 2015, 34(3): 366-368.
[6].单潮海, 周阳亮. 镀锌钝化液中锌杂质的络合滴定[J]. 广州化工, 2021, 49(8): 110-111.
[7].马文慧. 氰化镀铜电镀溶液中主成份的分析方法研究[J]. 科技创新与应用, 2013, 12(25): 28.
[8].李静. 水质分析滴定法滴定方式的改进[J]. 山西化工, 2024, 44(5): 78-79, 82.
[9].De Boer D K. Calculation of x-ray fluorescence intensities from bulk and multilayer samples[J]. X-ray Spectrometry, 1990, 19(3): 145-154.
[10].Sier D, Ekanayake R S K, Chantler C T. The significance of fluorescence in transmission X-ray absorption spectroscopy and X-ray absorption fine structure[J]. X-Ray Spectrometry, 2022, 51(1): 91-100.
[11].Wang H. Acid copper solution component analysis method about beginning and aging acid copper plating bath solution[C]. Agricultural and Natural Resources Engineering, 2011, 3(5): 38-41.
[12].孙玉凤. 酸性镀铜液中铜的测定[J]. 电镀与精饰, 2001, 23 (6): 28-30.
[13].任兵. HEDP无氰镀铜工艺研究[D]. 南昌: 南昌航空大学, 2016.
[14].刘仁志. 现代工艺手册[M]. 北京: 化学工业出版社, 2010: 245.
[15].Jung S M, Cho Y M, Na H G. Chemical analysis of zinc electroplating solutions by X-ray fluorescence spectrometry[J]. ISIJ International, 2007, 47(6): 853-859.
[16].De Caland L B, Silveira E L C, Tubino M. Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography[J]. Analytica Chimica Acta, 2012, 718: 116-120.
[17].李龙. 配对样本t检验在实验室分析质量控制中的应用[J]. 上海计量测试, 2020, 47(5): 32-34, 37.
[18].中华人民共和国生态环境部. HJ/T 168-2020 环境监测分析方法标准制订技术导则[S].北京: 中国环境出版社, 2020.
[19].吴世豪, 宋祥瑞, 赵鹏, 等. 高精度X射线荧光光谱法快速分析人体血液中6种有毒重金属元素[J]. 分析试验室, 2023, 42(7): 878-882.
[20].邓勃. 分析化学计量学[J]. 分析试验室, 1991(4): 143-159.