Liang Xiaoyu,Xu Bo,Zhao Ming*,et al.Simulation of laminar flow/bubble-nucleation and growth at the interface of the nickel electrodeposition?/html>[J].Plating & Finishing,2024,(7):1-7.[doi:10.3969/j.issn.1001-3849.2024.07.001]
镍电沉积界面层流/气泡-形核生长模拟研究
- Title:
- Simulation of laminar flow/bubble-nucleation and growth at the interface of the nickel electrodeposition?/html>
- Keywords:
- multi-field coupling ; nickel electrodeposition ; simulation ; bubbles ; flow field
- 分类号:
- TQ153.1
- 文献标志码:
- A
- 摘要:
- 为探明镍电沉积过程中电沉积基体 / 电沉积液界面低流速层流场内电沉积副反应产生的气泡演变规律、 Ni 2+ 浓度场变化和镍晶体形核及生长特点,建立了电场、低流速层流场、浓度场、气泡 / 沉积液 / 镍晶体多相场的气泡 / 层流 - 镍晶体形核生长模型,并利用有限元方法计算该模型。结果表明,当形核前的气泡从镍基体脱附到浓度扩散层边界时,在气泡脱附位置周围气泡迎流区和背流区的基体表面镍以瞬时形核方式形核,当离开 Ni 2+ 浓度扩散层后,其产生的低 Ni 2+ 浓度区与层流对流和 Ni 2+ 扩散作用使镍晶体沿 Ni 2+ 流动最大方向择优生长,在气泡迎流区的枝晶高度最高。与此不同,形核后的气泡从镍基体脱附到浓度扩散层边界时,气泡产生的涡流只能使已经形核的晶体不均匀生长;当离开 Ni 2+ 浓度扩散层后,随后镍晶体以枝晶形式生长,沿 Ni 2+ 流动最大方向枝晶的生长速度最快。
- Abstract:
- : In order to investigate the evolution of bubble , the variation of Ni 2+ concentration field , the characteristics of nucleation and the growth of nickel crystals at the substrate/electrodeposition solution interface in the low-flow laminar flow during the process of nickel electrodeposition , a simulation model of bubble/laminar flow-nickel crystal nucleation and growth coupled electric field , low-flow laminar flow field , concentration field , and bubble/solution/nickel crystal multiphase field has been established , which was calculated using the finite element method. The results showed that during the period of the pre-nucleation bubble desorbing from the nickel matrix to the boundary of the concentration diffusion layer , the nickel atoms on the surface of the matrix in the bubble upstream and downstream zones nucleated according to a transient nucleation mode , and when left the Ni 2+ diffusion layer , due to the low-Ni 2+ concentration zone and the effect of laminar convection and Ni 2+ diffusion , the nickel crystals grew preferentially along the direction of Ni 2+ flow then form nickel dendrites , The highest dendrites were found in the bubble upstream zones. Compared with this results , in the course of the post- nucleation bubble detaching from the nickel matrix to the boundary of the diffusion layer , the eddy current generated by the bubble can only cause the nucleated nickel crystals to grow unevenly ; after bubble left the Ni 2+ concentration diffusion layer , the nickel crystals subsequently grew in the form of dendrite , and the rapidest growth direction of nickel crystals depended on the direction of Ni 2+ flow.
参考文献/References:
[1] 陈汉斌 , 夏江冰 , 龚政 , 等 . 电沉积镍钨合金多层膜耐蚀性能研究 [J]. 电镀与精饰 , 2023, 45(1): 1-7.
[2] 马红雷 . 镍基 - 氧化铝复合镀层的电沉积法制备及其性能研究 [J]. 电镀与精饰 , 2018, 40(2): 5-10.
[3] 魏永生 , 王茂森 , 康健 , 等 . 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化 [J]. 材料导报 , 2018, 32(19): 3304-3308.
[4] 陈睿 , 赵明 , 李建国 , 等 . 海绵镍表面负载 TiO 2 纳米颗粒复合电沉积技术及光催化性能定量分析 [J]. 中国科技成果 , 2018(9): 20-21.
[5] 倪修任 , 张雅婷 , 王翀 , 等 . 电沉积纳米锥镍的生长机理及其性能的研究 [J]. 电化学 , 2022, 28(7): 70-80.
[6] Gorobets O Y, Gorobets V Y, Derecha D O, et al. Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field[J]. The Journal of Physical Chemistry C, 2008, 112(9): 3373-3375.
[7] Wang K, Xiao Y, Pei P, et al. A phase-field model of dendrite growth of electrodeposited zinc[J]. Journal of the Electrochemical Society, 2019, 166(10): D389.
[8] Gao L T, Huang P, Feng J, et al. In situ characterization and phase-filed modeling of the interaction between dendrites and gas bubbles during an electrochemical process[J]. ChemElectroChem, 2021, 8(15): 2881-2887.
[9] Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385.
[10] Liang L, Chen L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J]. Applied Physics Letters, 2014, 105(26): 263903.
[11] Jeon J, Yoon G H, Vegge T, et al. Phase-field investigation of lithium electrodeposition at different applied overpotentials and operating temperatures[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15275-15286.
[12] Meulenbroek A M, Vreman A W, Deen N G. Competing marangoni effects form a stagnant cap on the interface of a hydrogen bubble attached to a microelectrode[J]. Electrochimica Acta, 2021, 385: 138298.
[13] Rivera-Salinas J E, Gregorio-Jáuregui K M, Cruz-Ramírez A, et al. Computational study in bottom gas injection using the conservative level set method[J]. Processes, 2020, 8(12): 1643.
[14] Deshpande K B, Zimmerman W B. Simulation of interfacial mass transfer by droplet dynamics using the level set method[J]. Chemical Engineering Science, 2006, 61(19): 6486-6498.
[15] 邓港 . 铜基复合电沉积层制备的模拟研究 [D]. 北京 : 北方工业大学 , 2023.
[16] 张会 . 气泡对电解加工过程影响的仿真模拟及实验研究 [D]. 广州 : 广东工业大学 , 2017.
相似文献/References:
[1]冀林仙*,王跃峰.多场耦合研究PCB电镀铜[J].电镀与精饰,2022,(11):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
JI Linxian*,WANG Yuefeng.Research on Copper Electrodeposition of PCB Based on Multi-Physics Coupling[J].Plating & Finishing,2022,(7):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
备注/Memo
收稿日期: 2023-12-20 修回日期: 2023-12-28 作者简介: 梁晓雨( 1998 —),男,硕士, email : bdliangxy@mail.ncut.edu.cn * 通信作者: 赵明, email : zmncut@126.com . 基金项目: 国家自然科学基金项目( 51271003 )?/html>