PDF下载 分享
[1]张 翼,杨 滔*.锌钙系复合磷化膜的制备及其对 16Mn 钢腐蚀防护性能的影响[J].电镀与精饰,2024,(8):1-10.[doi:10.3969/j.issn.1001-3849.2024.08.001]
 Zhang Yi,Yang Tao *.Preparation of zinc-calcium composite phosphating films and its effect on the corrosion protection performance of 16Mn steel[J].Plating & Finishing,2024,(8):1-10.[doi:10.3969/j.issn.1001-3849.2024.08.001]
点击复制

锌钙系复合磷化膜的制备及其对 16Mn 钢腐蚀防护性能的影响

参考文献/References:



[1] Wan Y, Liu Q P, Fan Y Y. Research on corrosion resistance and formation mechanism of molybdate composite film[J]. Crystals, 2022, 12(11): 1559.

[2] 孙伟 , 杨辉 , 徐秀凤 , 等 . 促进剂对建筑结构钢锌钙系磷化膜形貌和耐蚀性的影响 [J]. 电镀与精饰 , 2023, 45(4): 8-12.

[3] Kong F X, Zhang X, Chen H, et al. Improving interfacial strength and corrosion resistance of fiber metal laminates by phosphating magnesium substrates[J]. Journal of Materials Engineering and Performance, 2023(32): 7050-7062.

[4] Yu H C, Zhou S X, Zhang G Q, et al. The phosphating effect on the properties of FeSiCr alloy powder[J]. Journal of Magnetism and Magnetic Materials, 2022, 552(15): 168741.

[5] 刘贵敏 . 柠檬酸钠对 45 钢锌锰系磷化膜耐蚀性能的影响 [J]. 兵器材料科学与工程 , 2022, 45(3): 25-30.

[6] 冉黎 , 李杰 . 封闭处理对钢筋磷化膜耐蚀性的影响 [J]. 电镀与精饰 , 2023, 45(5): 34-40.

[7] An K, An C Q, Yang C N, et al. Effect of phosphating and post-sealing on the corrosion resistance of electro-galvanized steel[J]. International Journal of Electrochemical Science, 2017, 12(3): 2102-2111.

[8] Abdel-Gawad S A, Sadik M A, Shoeib M A. Enhancing corrosion resistance of galvanized steel by phosphating and silicate post-sealing[J]. International Journal of Electrochemical Science, 2018(13): 2688-2704.

[9] 于海青 , 王金涛 , 王东 . Q345 钢表面 SiC 颗粒掺杂锌钙系磷化膜的制备与性能 [J]. 电镀与精饰 , 2021, 43(7): 20-24.

[10] 关玲 , 张伟华 . PTFE 颗粒对建筑钢结构表面磷化膜耐蚀性的影响 [J]. 电镀与涂饰 , 2021, 40(14): 1073-1078.

[11] Muhammad M, Ma R, Du A, et al. Preparation and modification of polydopamine boron nitride-titanium dioxide nanohybrid particles incorporated into zinc phosphating bath to enhance corrosion performance of zinc phosphate-silane coated Q235 steel[J]. Materials, 2023, 16(10): 3835.

[12] 孙晓光 , 陈志坚 , 周学杰 , 等 . 电偶对中 6A01 铝合金的电化学腐蚀行为研究 [J]. 材料保护 , 2022, 55(1): 102-108.

[13] Abdel-Karim A M, El-Shamy A M, Reda Y. Corrosion and stress corrosion resistance of Al Zn alloy 7075 by nano-polymeric coatings[J]. Journal of Bio- and Tribo-Corrosion, 2022(8): 57.

[14] Cao H J, Fang M X, Jia W H, et al. Remarkable improvement of corrosion resistance of silane composite coating with Ti 3 C 2 T x MXene on copper[J]. Composites Part B: Engineering, 2022, 228(1): 109427.

[15] 张宇庭 , 钟继如 , 关凯书 . 基体表面粗化对氧化石墨烯涂层耐腐蚀性能的影响 [J]. 材料保护 , 2022, 55(3): 102-106.

[16] 刘敏 , 张海兵 , 林冰 , 等 . 实验室加速环境下水性快干环氧厚浆底漆老化机理及失效过程 [J]. 表面技术 , 2022, 51(11): 305-317.

[17] 孙永江 , 张金玲 , 翟海民 , 等 . Zn-Al 冷喷涂复合涂层耐 3.5 wt.% NaCl 溶液腐蚀行为 [J]. 兰州理工大学学报 , 2023, 49(2): 17-23.

[18] Cristoforetti A, Rossi S, Deflorian F, et al. On the limits of the EIS low-frequency impedance modulus as a tool to describe the protection properties of organic coatings exposed to accelerated aging tests[J]. Coatings, 2023, 13(3): 598.

[19] 徐爱民 , 何卫 , 马恒 , 等 . 铝合金表面磷化预处理对水性环氧清漆涂层防护性能的影响 [J]. 材料保护 , 2022, 55(2): 42-47.

[20] Yan D S, Zhang X H, Zhang W J, et al. Smart self-healing coating based on the highly dispersed silica/carbon nanotube nanomaterial for corrosion protection of steel[J]. Progress in Organic Coatings, 2022(164): 106694.

相似文献/References:

[1]岳 伟*,王 冰,刘颖春.建筑用16Mn钢表面制备锌系复合磷化膜及其耐腐蚀与抗污染性能[J].电镀与精饰,2023,(6):1.[doi:10.3969/j.issn.1001-3849.2023.06.001]
 Yue Wei*,Wang Bing,Liu Yingchun.Preparation of zinc composite phosphating films on 16Mn steel for c onstruction and their corrosion resistance and antifouling performance[J].Plating & Finishing,2023,(8):1.[doi:10.3969/j.issn.1001-3849.2023.06.001]

备注/Memo

收稿日期: 2023-07-29 修回日期: 2023-10-20 作者简介: 张翼( 1988 —),硕士,高级工程师,研究方向为建筑智能化、建筑领域新能源新材料应用, email : Xianzhangyi07@126.com * 通信作者: 杨滔( 1976 —),博士,副教授, email : yangtao128@tsinghua.edu.cn 基金项目: 国家重点研发计划项目( 2022YFC3800600 )

更新日期/Last Update: 2024-08-16