Zhang Yi,Yang Tao *.Preparation of zinc-calcium composite phosphating films and its effect on the corrosion protection performance of 16Mn steel[J].Plating & Finishing,2024,(8):1-10.[doi:10.3969/j.issn.1001-3849.2024.08.001]
锌钙系复合磷化膜的制备及其对 16Mn 钢腐蚀防护性能的影响
- Title:
- Preparation of zinc-calcium composite phosphating films and its effect on the corrosion protection performance of 16Mn steel
- 关键词:
- 锌钙系复合磷化膜; 16Mn 钢; PTFE 颗粒分散液; 搅拌速度; 腐蚀防护性能
- Keywords:
- zinc-calcium composite phosphating film ; 16Mn steel ; PTFE particles dispersion solution ; stirring speed ; corrosion protection performance
- 分类号:
- TG174
- 文献标志码:
- A
- 摘要:
- 通过磷酸盐沉淀结晶过程将聚四氟乙烯( PTFE )颗粒引入锌钙系磷化膜中获得锌钙系复合磷化膜,并研究 PTFE 颗粒分散液添加量和搅拌速度对锌钙系磷化膜的微观形貌、化学组成、 PTFE 颗粒含量、厚度以及对 16Mn 钢的腐蚀防护性能的影响。结果表明:改变 PTFE 颗粒分散液添加量或搅拌速度制备的不同锌钙系复合磷化膜晶粒大小较均匀,但是呈散乱无序状堆积, PTFE 颗粒附着在晶粒表面并填补晶粒间孔洞,起到阻挡腐蚀介质并阻碍腐蚀反应的作用,明显提高锌钙系复合磷化膜的耐腐蚀性能。当搅拌速度为 300 r/min 时,添加 25 mL/L PTFE 颗粒分散液制备的锌钙系复合磷化膜晶粒表面附着较多 PTFE 颗粒,并且颗粒呈较均匀分散状态很好的填补晶粒间孔洞。该复合磷化膜含有 Zn 、 Ca 、 P 、 O 、 C 和 F 元素, PTFE 颗粒的含量和厚度分别达到 4.1% 、 12.4 μ m ,具有最高的电荷转移电阻 8528 Ω ·cm 2 和低频阻抗值 6015 Ω ·cm 2 ,表现出优异的耐腐蚀性能,使 16Mn 钢的腐蚀防护性能明显优于常规锌钙系磷化膜。
- Abstract:
- : Zinc-calcium composite phosphating film was obtained by introducing PTFE ( PTFE ) particles into the zinc-calcium phosphating film through the process of phosphate precipitation and crystallization , and the effect of addition amount of PTFE particles dispersion solution and stirring speed on the microstructure , chemical composition , content of PTFE particles and thickness of the composite phosphating film and the corrosion protection performance of composite phosphating film on 16Mn steel were investigated. The results show that the different zinc-calcium composite phosphating films prepared by changing the addition amount of PTFE particles dispersion solution or stirring speed have uniform grain size , but they are scattered and disordered , and PTFE particles adhere to the grain surface and fill the pores between the grains , which can block the corrosive medium and hinder the corrosion electrochemical reaction , and obviously improve the corrosion resistance of zinc-calcium composite phosphating film. When the stirring speed is 300 r/min and adding amount of PTFE particles dispersion solution is 25 mL/L , many PTFE particles attached to the surface of the grains of the zinc-calcium composite phosphating film and the particles are evenly dispersed to fill the pores between the grains. The composite phosphating film contains Zn , Ca , P , O , C and F elements , the content of PTFE particles and thickness reach 4.1% and 12.4 μ m , respectively , and has the highest charge transfer resistance 8528 Ω ·cm 2 and low-frequency impedance value 6015 Ω ·cm 2 , showing excellent corrosion resistance. The corrosion protection performance of the zinc-calcium composite phosphating film prepared under the above condition on 16Mn steel is obviously better than that of con-ventional zinc-calcium phosphating film.
参考文献/References:
[1] Wan Y, Liu Q P, Fan Y Y. Research on corrosion resistance and formation mechanism of molybdate composite film[J]. Crystals, 2022, 12(11): 1559.
[2] 孙伟 , 杨辉 , 徐秀凤 , 等 . 促进剂对建筑结构钢锌钙系磷化膜形貌和耐蚀性的影响 [J]. 电镀与精饰 , 2023, 45(4): 8-12.
[3] Kong F X, Zhang X, Chen H, et al. Improving interfacial strength and corrosion resistance of fiber metal laminates by phosphating magnesium substrates[J]. Journal of Materials Engineering and Performance, 2023(32): 7050-7062.
[4] Yu H C, Zhou S X, Zhang G Q, et al. The phosphating effect on the properties of FeSiCr alloy powder[J]. Journal of Magnetism and Magnetic Materials, 2022, 552(15): 168741.
[5] 刘贵敏 . 柠檬酸钠对 45 钢锌锰系磷化膜耐蚀性能的影响 [J]. 兵器材料科学与工程 , 2022, 45(3): 25-30.
[6] 冉黎 , 李杰 . 封闭处理对钢筋磷化膜耐蚀性的影响 [J]. 电镀与精饰 , 2023, 45(5): 34-40.
[7] An K, An C Q, Yang C N, et al. Effect of phosphating and post-sealing on the corrosion resistance of electro-galvanized steel[J]. International Journal of Electrochemical Science, 2017, 12(3): 2102-2111.
[8] Abdel-Gawad S A, Sadik M A, Shoeib M A. Enhancing corrosion resistance of galvanized steel by phosphating and silicate post-sealing[J]. International Journal of Electrochemical Science, 2018(13): 2688-2704.
[9] 于海青 , 王金涛 , 王东 . Q345 钢表面 SiC 颗粒掺杂锌钙系磷化膜的制备与性能 [J]. 电镀与精饰 , 2021, 43(7): 20-24.
[10] 关玲 , 张伟华 . PTFE 颗粒对建筑钢结构表面磷化膜耐蚀性的影响 [J]. 电镀与涂饰 , 2021, 40(14): 1073-1078.
[11] Muhammad M, Ma R, Du A, et al. Preparation and modification of polydopamine boron nitride-titanium dioxide nanohybrid particles incorporated into zinc phosphating bath to enhance corrosion performance of zinc phosphate-silane coated Q235 steel[J]. Materials, 2023, 16(10): 3835.
[12] 孙晓光 , 陈志坚 , 周学杰 , 等 . 电偶对中 6A01 铝合金的电化学腐蚀行为研究 [J]. 材料保护 , 2022, 55(1): 102-108.
[13] Abdel-Karim A M, El-Shamy A M, Reda Y. Corrosion and stress corrosion resistance of Al Zn alloy 7075 by nano-polymeric coatings[J]. Journal of Bio- and Tribo-Corrosion, 2022(8): 57.
[14] Cao H J, Fang M X, Jia W H, et al. Remarkable improvement of corrosion resistance of silane composite coating with Ti 3 C 2 T x MXene on copper[J]. Composites Part B: Engineering, 2022, 228(1): 109427.
[15] 张宇庭 , 钟继如 , 关凯书 . 基体表面粗化对氧化石墨烯涂层耐腐蚀性能的影响 [J]. 材料保护 , 2022, 55(3): 102-106.
[16] 刘敏 , 张海兵 , 林冰 , 等 . 实验室加速环境下水性快干环氧厚浆底漆老化机理及失效过程 [J]. 表面技术 , 2022, 51(11): 305-317.
[17] 孙永江 , 张金玲 , 翟海民 , 等 . Zn-Al 冷喷涂复合涂层耐 3.5 wt.% NaCl 溶液腐蚀行为 [J]. 兰州理工大学学报 , 2023, 49(2): 17-23.
[18] Cristoforetti A, Rossi S, Deflorian F, et al. On the limits of the EIS low-frequency impedance modulus as a tool to describe the protection properties of organic coatings exposed to accelerated aging tests[J]. Coatings, 2023, 13(3): 598.
[19] 徐爱民 , 何卫 , 马恒 , 等 . 铝合金表面磷化预处理对水性环氧清漆涂层防护性能的影响 [J]. 材料保护 , 2022, 55(2): 42-47.
[20] Yan D S, Zhang X H, Zhang W J, et al. Smart self-healing coating based on the highly dispersed silica/carbon nanotube nanomaterial for corrosion protection of steel[J]. Progress in Organic Coatings, 2022(164): 106694.
相似文献/References:
[1]岳 伟*,王 冰,刘颖春.建筑用16Mn钢表面制备锌系复合磷化膜及其耐腐蚀与抗污染性能[J].电镀与精饰,2023,(6):1.[doi:10.3969/j.issn.1001-3849.2023.06.001]
Yue Wei*,Wang Bing,Liu Yingchun.Preparation of zinc composite phosphating films on 16Mn steel for c onstruction and their corrosion resistance and antifouling performance[J].Plating & Finishing,2023,(8):1.[doi:10.3969/j.issn.1001-3849.2023.06.001]
备注/Memo
收稿日期: 2023-07-29 修回日期: 2023-10-20 作者简介: 张翼( 1988 —),硕士,高级工程师,研究方向为建筑智能化、建筑领域新能源新材料应用, email : Xianzhangyi07@126.com * 通信作者: 杨滔( 1976 —),博士,副教授, email : yangtao128@tsinghua.edu.cn 基金项目: 国家重点研发计划项目( 2022YFC3800600 )