Chen Jie,Zong Gaoliang,Dai Yuhan,et al.Study on the influence of pyrithione isomers on filling blind holes in electroplated copper[J].Plating & Finishing,2024,(9):1-9.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.001]
巯基吡啶异构体对电镀铜填盲孔的影响研究
- Title:
- Study on the influence of pyrithione isomers on filling blind holes in electroplated copper
- Keywords:
- copper electroplating; filling blind holes; levelers; 2-mercaptopyridine; 4-mercaptopyridin
- 分类号:
- TG176
- 文献标志码:
- A
- 摘要:
- 本文以同分异构体2-巯基吡啶(2-MP)和4-巯基吡啶(4-MP)为研究对象,在对比其作为整平剂填充盲孔性能差异的基础上,阐述其分子构效关系。首先,通过哈林槽镀铜实验研究了2-MP与4-MP的填盲孔性能,结果表明,2-MP的填孔性能更佳,其填孔率可达82%。之后,通过量子化学计算,发现2-MP分子中S原子电子云密度低于4-MP,这说明2-MP更易吸附在铜表面。计时电位法测试结果表明:Cl-可促进2-MP在铜表面的吸附,此外,2-MP与PEG之间的相互作用显著强于4-MP。最后,通过X射线光电子能谱(XPS)检测到了Cu-S键的存在,证明两种整平剂分子在铜表面均发生了化学吸附。然而,由于2-MP分子中的巯基S原子与N原子处于邻位,可以形成S-Cu2+-N配合物,进而与Cl?、PEG形成复杂且致密的抑制层,强烈抑制表面铜沉积,从而提高了其盲孔填孔率。
- Abstract:
- The study focused on the isomers 2-mercaptopyridine (2-MP) and 4-mercaptopyridine (4-MP), comparing their performance as levelers in filling blind holes. Copper plating experiments in a Hull cell initially investigated the blind hole filling capabilities of 2-MP and 4-MP. The results indicated superior performance by 2-MP, achieving a filling rate of up to 82%. Quantum chemical calculations later revealed a lower electron cloud density of the sulfur atom in the 2-MP molecule than in 4-MP. This suggests a higher likelihood of 2-MP adsorbing onto the copper surface. Chronopotentiometric measurements showed that Cl? can promote the adsorption of 2-MP on the copper surface. Furthermore, the interaction between 2-MP and PEG was significantly stronger than that of 4-MP. X-ray photoelectron spectroscopy (XPS) detected the existence of Cu-S bonds in the final stage, proving chemical adsorption of both levelers onto the copper surface. Nevertheless, the proximity of the mercapto S atom and N atom in the 2-MP molecule allows for the formation of a S-Cu 2+-N complex. This complex, in combination with Cl? and PEG, creates a complex and dense inhibition layer. This layer strongly suppresses surface copper deposition, thereby enhancing the blind hole filling rate of 2-MP.
参考文献/References:
[1].王增林. A synergy effect of 2-MBT and PE-3650 on the bottom-up filling in electroless copper plating [C]// 中国电子学会电子制造与封装技术分会电镀专家委员会,上海市电子学会电子电镀专业委员会. 2011年全国电子电镀及表面处理学术交流会论文集. 西安:教育部应用表面与胶体化学重点实验室(陕西师范大学), 2011: D107-D109.
[2].Lühn O, Hoof V C, Ruythooren W, et al. Filling of microvia with an aspect ratio of 5 by copper electrodeposition [J]. Electrochimica Acta, 2009, 54(9): 2504-2508.
[3].Liu Y, Aleksandar Radisic, Johan Deconinck, et al. Modeling the bottom-up filling of through-silicon vias through suppressor adsorption/desorption mechanism [J]. ECS Meeting Abstracts, 2013, 160(12): D3051-D3056.
[4].Josell D, Wheeler D, Moffat T P. Modeling extreme bottom-up filling of through silicon vias [J]. ECS Meeting Abstracts, 2012, 159(10): D570-D576.
[5].Lu X B, Yao L J, Ren S J, et al. A study of bottom-up electroplated copper filling by the potential difference between two rotating speeds of a working electrode [J]. Journal of Electroanalytical Chemistry, 2014 (712): 25-32.
[6].Lei Z W, Chen L, Wang W L, et al. Tetrazole derived levelers for filling electroplated cu microvias: electrochemical behaviors and quantum calculations [J]. Electrochimica Acta, 2015(178): 546-554.
[7].Ren S, Lei Z, Wang Z. Investigation of suppressor polyethylene glycol dodecyl ether on electroplated cu filling by electrochemical method [J]. Chemicals & Chemistry, 2015, 93(4): 190-195.
[8].Dow W P, Huang H S, Yen M Y, et al. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating [J]. Journal of The Electrochemical Society, 2005, 152(6) :C425-C434.
[9].Wang Z Y, Jin L, Li G, et al. Electrochemical and in situ FTIR spectroscopic studies of gentian violet as a novel leveler in through-holes metallization for printed circuit board applications [J]. Electrochimica Acta, 2022(410): 1-12.
[10].Chang C, Lu X, Lei Z, et al. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating [J]. Electrochimica Acta, 2016(208): 33-38.
[11].Zhang Y M, Hang T, Dong M Y, et al. Effects of 2-Mercaptopyridine and janus green B as levelers on electrical resistance of electrodeposited copper thin film for interconnects [J]. Thin Solid Films, 2019(677): 39-44.
[12].Zhou H B, Yang C, Chao L, et al. Experimental and theoretical study of 2-Mercaptopyridine as an effective eco-friendly inhibitor for copper in aqueous NaCl [J]. Journal of Molecular Liquids, 2023(382): 74-83.
[13].Do H W, Lee J C, Kim Y D, et al. Adsorption of 2-Mercaptopyridine and 4-Mercaptopyridine on a silver surfaces investigated by SERS spectroscopy [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2141-2146.
[14].Barouni K, Bazzi L, Salghi R, et al. Some amino acids as corrosion inhibitors for copper in nitric acid solution [J]. Materials Letters, 2008,62(19): 3325-3327.
[15].Issami E S, Bazzi L, Mihit M, Triazolic compounds as corrosion inhibitors for copper in hydrochloric acid [J]. Pigment & Resin Technology, 2007, 36(3): 161-168.
[16].Li Y, Sonar P, Murphy L, et al. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics [J]. Energy & Environmental Science, 2013, 6(6): 1684-1710.
[17].Willey J M, McInerney J E. Adsorption and desorption kinetics of a block copolymer wetting agent used in copper electroplating [J]. Journal of The Electrochemical Society, 2009, 156(3): D98-D103.
[18].Alonso C, López F M, Gutiérrez A, et al. X-ray photoelectron spectroscopy study of thiols adsorbed on Pt(111) with and without the presence of a copper monolayer [J]. Surface and Interface Analysis, 2000, 30(1): 359-363.
[19].Ahmed M, Byrne J A, McLaughlin D A J. Glycine Adsorption onto DLC and N-DLC thin films studied by XPS and AFM [J]. e-Journal of Surface Science and Nanotechnology, 2009(7): 217-224.
[20].Wang Z F, Li Z J, Dai T Q, et al. Addition of adipose-derived stem cells to mesenchymal stem cell sheets improves bone formation at an ectopic site [J]. International Journal of Molecular Sciences , 2016, 17(2): 70.
[21].Tsai H C, Chang Y C, Wu P W. Rapid galvanostatic determination on levelers for superfilling in cu electroplating [J]. Electrochemical and Solid-State Letters, 2010, 13(2): D7-D10.
[22].Hao Z M, Zhang X M. Phosphorescent acentric cuprous halide coordination polymers for nolinear optical materials [J]. Crystal Growth & Design, 2008, 8(7): 2359-2363.
相似文献/References:
[1]冀林仙*,王跃峰.多场耦合研究PCB电镀铜[J].电镀与精饰,2022,(11):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
JI Linxian*,WANG Yuefeng.Research on Copper Electrodeposition of PCB Based on Multi-Physics Coupling[J].Plating & Finishing,2022,(9):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
[2]向 静,阮海波*,王 翀,等.添加剂竞争吸附机理研究及通孔电镀应用[J].电镀与精饰,2022,(11):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
XIANG Jing,RUAN Haibo*,WANG Chong,et al.Study on Competitive Adsorption Mechanism of Additives and Its Application of Though Holes Plating[J].Plating & Finishing,2022,(9):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
[3]郑家翀,何 为,陈先明,等.镀镍磷金属片表面处理对电镀铜生长状态影响的研究[J].电镀与精饰,2024,(1):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
Zheng Jiachong,He Wei,Chen Xianming,et al.Effect of surface treatment on growth state of electroplating copper for nickel-phosphorus plated metal[J].Plating & Finishing,2024,(9):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
[4]刘颖*,邢希瑞,田栋,等.酸性一价铜电镀铜的工艺及能效分析[J].电镀与精饰,2024,(4):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
Liu Ying*,Xing Xirui,Tian Dong,et al.Energy efficiency analysis of copper electroplating employing acidic cuprous solution[J].Plating & Finishing,2024,(9):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
[5]性能影响研究.退火对TSV电镀铜膜层性能影响研究[J].电镀与精饰,2024,(10):42.
Yu Xianxian*,Jiang Chuang,Zhang Cuicui.Effect of annealing on the properties of electroplated copper in TSV[J].Plating & Finishing,2024,(9):42.
[6]杨彦章,陈志华,钟上彪,等.doi: 10.3969/j.issn.1001-3849.2025.03.0014PEG在电子电镀铜中的作用机制及应用[J].电镀与精饰,2025,(03):96.
Liu Binyun*,Zhan Dongping.The mechanism and application of PEG in electronic electroplating of copper Yang Yanzhang1,2, Chen Zhihua2, Zhong Shangbiao 2,Ye Shaoming3,[J].Plating & Finishing,2025,(9):96.
[7]方 正,韦相福,杨广柱,等.doi: 10.3969/j.issn.1001-3849.2025.03.015盲孔数值仿真电镀铜研究进展[J].电镀与精饰,2025,(03):106.
Hu Xiaoqiang,Chen Dedeng.Advances in numerical simulation of copper electroplating in blind vias Fang Zheng1, Wei Xiangfu1,2, Yang Guangzhu1, Mao Xianchang1,3, Wei Song3*,[J].Plating & Finishing,2025,(9):106.
[8]高晓颖,王浩军,周雁文,等.doi: 10.3969/j.issn.1001-3849.2025.04.007HEDP体系无氰镀铜的工艺参数和性能研究[J].电镀与精饰,2025,(04):42.
Gao Xiaoying,Wang Haojun*,Zhou Yanwen,et al.Research on process parameters and properties of non-cyanide copper plating in HEDP system[J].Plating & Finishing,2025,(9):42.