Zhang Xihuan,Wang Pengjie,Wang Mingan,et al.Study on a new type of spinel heterostructure catalyst and oxygen evolution reaction[J].Plating & Finishing,2024,(9):10-18.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.002]
一种新型尖晶石异质结构的催化剂及析氧反应的研究
- Title:
- Study on a new type of spinel heterostructure catalyst and oxygen evolution reaction
- 分类号:
- TQ151.6
- 文献标志码:
- A
- 摘要:
- 为提高在碱性环境中的过渡金属的电催化性能并降低使用成本,合成一种新型尖晶石异质结构的催化剂,并研究R-CFO在1.0 mol/L KOH溶液中的电催化活性及其催化机理。以硝酸钴、硝酸铁、三氯化钌为原料,制备出RuO2@CoFe2O4新型材料。通过XRD、TEM、XPS、电化学实验和理论计算等方法,研究R-CFO在1.0 mol/L KOH溶液中的催化活性及其催化机理。电催化实验表明,合成的新型催化剂R-CFO在碱性环境下的电流密度为10 mA/cm2时的过电位和Tafel斜率仅仅需要215 mV和50.93 mV/dec,电流-时间变化曲线中表现出催化剂较为稳定,合成的R-CFO电催化剂表现出优异的催化性能。因此,本文提出了一种很有前途的方法,对电催化具有潜在应用价值。
- Abstract:
- In order to improve the electrocatalytic performance of transition metals in alkaline environment and reduce the cost, a novel spinel heterostructure catalyst was synthesized, and the electrocatalytic activity and catalytic mechanism of R-CFO in 1.0 mol/L KOH solution were studied. Using cobalt nitrate, iron nitrate and ruthenium trichloride as raw materials, RuO2@CoFe2O4 new material was prepared. The catalytic activity and mechanism of R-CFO in 1.0 mol/L KOH solution were studied by XRD, TEM, XPS, electrochemical experiments and theoretical calculation. Electrocatalytic experiments show that the overpotential and Tafel slope of the synthesized new catalyst R-CFO only require 215 mV and 50.93 mV/dec when the current density is 10 mA/cm 2 under alkaline environment. The current time curve shows that the catalyst is relatively stable. The synthesized R-CFO electrocatalyst showed excellent catalytic performance. Therefore, a promising method is proposed in this paper, which has potential application value for electrocatalysis
参考文献/References:
[1].Gao D, Zhang J, Wang T, et al. Metallic Ni 3N nanosheets with exposed active surface sites for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(44): 17363.
[2].Hu Q, Li G, Li G, et al. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn-air batteries[J]. Advanced Energy Materials, 2019, 9(14): 1803867.
[3].Zhu S, Lei J, Qin Y, et al. Spinel oxide CoFe 2O4 grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction[J]. RSC Advances, 2019, 9(23): 13269.
[4].Nian-Tzu Suen, Sung-Fu Hung, Quan Quan, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemistry Society Reviews, 2017, 46(2):337.
[5].Bai J, Cheng L, Liu S, et al. Unravel the mechanism of d-orbital modulation and oxygen vacancy in cerium-doped RuO 2 catalysts for acidic oxygen evolution reaction[J]. Applied Surface Science, 2024, 642:158613.
[6].江永. 用于宽pH电解水的高效、稳定Ru基催化剂:制备和性能研究[D]. 西南大学, 2022.
[7].李创, 王宇, 张亚男, 等. 氮掺杂碳负载表面部分暴露的CoFe2O4用于高性能催化析氧反应[J]. 复合材料学报, 2023, 40(3): 1552.
[8].Gao R, Deng M, Yan Q, et al. Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction[J]. Small Methods, 2021, 5(12): e2100834.
[9].Yang Y, Luo M, Zhang W, et al. Metal surface and interface energy electrocatalysis: fundamentals, Performance Engineering, and Opportunities(Review)[J]. Chem, 2018, 4(9):2054.
[10].Tang R, Ying M, Zhang X, et al. Interfacial heterojunction-engineered Fe 2O3/CoFe-layered double hydroxide catalyst for the electrocatalytic oxygen evolution reaction[J]. Energy & Fuels, 2022, 36(19): 11584.
[11].何菲, 闫共芹. 尖晶石型铁氧体空心纳微球的水热法制备及其性能研究进展[J]. 合成化学, 2015, 12: 1178.
[12].Xie X, Wang B, Wang Y, et al . Spinel structured MFe 2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review[J]. Chemical Engineering Journal, 2022, 428(15 January): 131160.
[13].Wang Y, Liu Q, Hu T, et al. Carbon supported MnO 2-CoFe2O4 with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution[J]. Applied Surface Science, 2017, 403(1): 51.
[14].Zhang C, Yu S. Nanoparticles meet electrospinning: recent advances and future prospects[J]. Chemical Society reviews, 2014, 43(13): 4423.
[15].张晶, 苏玉长, 谭江等. 共沉淀制备CoFe2O4纳米晶及其表征[J]. 中南大学学报(自然科学版), 2018, 49(8): 1900.
[16].Kim K H, Choi Y H. Highly efficient CoFe2O4 electrocatalysts prepared facilely by metal-organic decomposition process for the oxygen evolution reaction[J]. Electrochimica Acta, 2021, 395: 139195.
[17].Nozari-Asbemarz M, Amiri M, Khodayari A, et al. In situ synthesis of Co 3O4/CoFe2O4 derived from a metal-organic framework on nickel foam: high-performance electrocatalyst for water oxidation[J]. ACS Applied Energy Materials, 2021, 4(3): 2951.
[18].Jiang Y, Liu H, Jiang Y, et al. Adjustable heterointerface-vacancy enhancement effect in RuO 2@Co3O4 electrocatalysts for efficient overall water splitting[J]. Applied Catalysis B: Environmental, 2023, 324: 122294.
[19].Perivoliotis D K, Ekspong J, Zhao X, et al. Recent progress on defect-rich electrocatalysts for hydrogen and oxygen evolution reactions[J]. Nano Today, 2023, 50: 101883.
[20].Galani S M, Mondal A, Srivastava D N, et al. Development of RuO 2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(37): 18635.
[21].Clark S J, Segall M D, Pickard C J. First principles methods using CASTEP [J]. ZeitschriftfuerKristallographie, 2006, 220(5-6): 567.
[22].Gong D, Zhu J, Lu B. RuO2@Co3O4 heterogeneous nanofibers: a high-performance electrode material for supercapacitors[J]. RSC Advances, 2016, 6(54):49173.
[23].刘越仁,辛永磊,许立坤等. Ti/Co3O4/RuO2-IrO2纳米结构阳极电催化析氧研究[J]. 表面技术, 2022, 51(11): 436.
[24].Zhang N, Ruan S, Qu F, et al. Metal–organic framework-derived Co 3O4/CoFe2O4 double-shelled nanocubes for selective detection of sub-ppm-level formaldehyde[J]. Sensors & Actuators B: Chemical, 2019, 298:126887.
[25].Li S, Yang X, Yang S, et al. An amorphous trimetallic (Ni-Co-Fe) hydroxide-sheathed 3D bifunctional electrode for superior oxygen evolution and high-performance cable-type flexible zinc-air batteries(Article)[J]. Journal of Materials Chemistry A, 2020, 8(11): 5601.
[26].Sun Y, Li Y, You S, et al. Fe 3C/CoFe2O4 nanoparticles wrapped in one-dimensional MIL-53(Fe)-derived carbon nanofibers as efficient dual-function oxygen catalysts[J]. Chemical Engineering Journal, 2021, 424: 130460.
[27].Zhang J, Qian J, Ran J, et al. Engineering lower coordination atoms onto NiO/Co 3O4 heterointerfaces for boosting oxygen evolution reactions[J]. ACS Catalysis, 2020, 10 (21):12376.
[28].Wu Z, Zhao Y, Wu H, et al . Corrosion engineering on iron foam toward efficiently electrocatalytic overall water splitting powered by sustainable energy[J]. Advanced Functional Materials, 2021, 31 (17): 1.
[29].Su Q H, Rui S, Liu Q C, et al. Surface reconstruction of RuO2/Co3O4 amorphous-crystalline heterointerface for efficient overall water splitting[J]. Journal of Colloid and Interface Science, 2023, 658: 43.
[30].Wu Y, Yao R, Zhang K, et al. RuO2/CeO2 heterostructure anchored on carbon spheres as a bifunctional electrocatalyst for efficient water splitting in acidic media[J]. Chemical Engineering Journal, 2024, 479: 147939.
[31].Wang B, Ye Y, Xu L, et al. Space-confined yolk-shell construction of Fe3O4 nanoparticles inside N-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc–air batteries[J]. Advanced Functional Materials, 2020, 30(51): 1.
[32].An L, Wei C, Lu M, et al. Recent development of oxygen evolution electrocatalysts in acidic environment[J]. Advanced Materials, 2021, 33(20): 2006328.
[33].Xu X, Liu M, Nie Y, et al. Modulating electronic structure of interfacial Fe sites in Fe2N/CoFe2O4 nano-heterostructure for enhancing corrosion-resistance and oxygen electrocatalysis in zinc-air battery[J]. Chemical Engineering Journal, 2023, 471: 144639.
[34].Zhang L, Wei T, Jiang Z, et al. Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage [J]. Nano Energy, 2018, 48: 238.
[35].Huang Y, Yang W, Yu Y, et al. Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction [J]. Journal of Electroanalytical Chemistry, 2019, 840(1): 409.
[36].Li J, Dong H, Baker D R, et al. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides[J]. Journal of the American Chemical Society, 2020, 142(1): 50.
[37].Liu Y, Liang X, Gu L, et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours[J]. Nature Communications, 2018, 9(1): 1.
[38].王宏智, 高琪, 苏展等. 泡沫镍基三维空心球CoFe2O4@NF复合材料的制备与析氧性能研究[J]. 化学工业与工程, 2021, 38(2): 61.
[39].Zhao Y, Xi M, Qi Y, et al. Redirecting dynamic structural evolution of nickel-contained RuO 2 catalyst during electrochemical oxygen evolution reaction[J]. Journal of Energy Chemistry, 2022, 69: 330.
[40].Jiang S J, Su G H, Wu J B, et al. Co3O4/CoFe2O4 hollow nanocube multifunctional nanozyme with oxygen vacancies for deep-learning-assisted smartphone biosensing and organic pollutant degradation[J]. ACS applied materials & interfaces, 2023, 15(9): 11787.