Niu Chao,Wang Kefeng,Li Heng,et al.Preparation and property of laser cladding coating on Q345 steel surface based on PLC control[J].Plating & Finishing,2024,(9):56-63.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.008]
基于PLC控制的Q345钢表面激光熔覆涂层制备与性能研究
- Title:
- Preparation and property of laser cladding coating on Q345 steel surface based on PLC control
- Keywords:
- Q345 low alloy steel; high speed laser cladding; laser remelting; coating; hardness and corrosion resistance
- 分类号:
- TG665;TG174.4
- 文献标志码:
- A
- 摘要:
- 为了提高海洋装备用Q345低合金钢的耐蚀性,基于可编程逻辑控制器(PLC)控制高速激光熔覆与激光重熔工艺参数在Q345低合金钢表面制备了Cu-Ni合金涂层,研究了不同激光重熔速度下涂层的显微形貌、物相组成、硬度和耐蚀性。结果表明,不同激光重熔速度处理后,高速激光熔覆涂层中的微裂纹基本消失,激光重熔速度的提高会增加重熔涂层中气孔缺陷数量。随着重熔速度增加,激光重熔涂层的表面粗糙度逐渐增大,涂层中Fe、Cu和Ni元素成分分布不均匀性逐渐增大。重熔涂层的硬度高于高速激光熔覆涂层,CR1涂层的硬度最高。极化曲线和电化学阻抗谱的测试结果表明,重熔速度增加会使得涂层腐蚀电位负向移动、腐蚀电流密度增大、电荷转移电阻减小,CR1涂层的耐蚀性优于CR2、CR3和CR4涂层,CR1涂层具有最佳耐蚀性。
- Abstract:
- In order to improve the corrosion resistance of Q345 low alloy steel for marine equipment, a Cu-Ni alloy coating was prepared on the surface of Q345 low alloy steel using PLC controlled high-speed laser cladding and laser remelting process parameters. The microstructure, phase composition, hardness, and corrosion resistance of the coating were studied under different laser remelting speeds. The results showed that after different laser remelting speeds, the microcracks in the high-speed laser cladding coating basically disappeared, and an increase in laser remelting speed would increase the number of porosity defects in the remelted coating. As the remelting speed increases, the surface roughness of the laser remelted coating gradually increases, and the uneven distribution of Fe, Cu, and Ni elements in the coating gradually increases. The hardness of the remelted coating is higher than that of the high-speed laser cladding coating, with the CR1 coating has the highest hardness. The test results of polarization curves and electrochemical impedance spectroscopy show that the increase in remelting speed will cause a negative shift in the corrosion potential of the coating, an increase in corrosion current density, and a decrease in charge transfer resistance. The corrosion resistance of CR1 coating is better than that of CR2, CR3, and CR4 coatings, and CR1 coating has the best corrosion resistance
参考文献/References:
[1].李怀峰, 贾鑫, 王宏博, 等. 模拟工业海洋大气环境下Q345qDNH钢锈蚀行为研究[J]. 钢结构(中英文), 2023, 38(10): 16-24.
[2].王玉博, 翟晓亮, 梁智涛, 等. 耐候桥梁钢在模拟工业大气环境中的腐蚀行为研究[J]. 材料保护, 2022, 55(12): 84-90.
[3].谢瑞祥, 刘宗德, 马荷蓉, 等. 铝合金表面激光熔覆铜镍合金涂层的组织、硬度与耐蚀特性研究[J]. 材料科学与工艺, 2023, 31(6): 78-86.
[4].Lin S P, Li D L, Zhou Q Q, et al. Study on corrosion perforation behavior of copper nickel alloy pipe during service in marine environment[J]. Engineering Failure Analysis, 2023, 153: 107628-107635
[5].赵媛媛, 户佩佩, 李恒, 等. 基于PLC控制的T2紫铜-SUS304不锈钢激光焊接组织与性能研究[J]. 应用激光, 2021, 41(2): 284-292.
[6].Li C W, Zhu J L, Cai Z H, et al. Microstructure and corrosion resistance of underwater laser cladded duplex stainless steel coating after underwater laser remelting processing[J]. Materials, 2021, 14(17): 4965-4972.
[7].姚国林, 罗新宇, 陈子然. Q345B钢表面激光熔覆工艺的PLC控制与涂层性能研究[J]. 电镀与精饰, 2023, 45(12): 42-48.
[8].张冬梅, 李恒, 邢峰. TiB2含量对基于PLC控制的激光选区熔化成形TiB2/4Cr13钢复合材料组织与性能的影响[J]. 机械工程材料, 2024, 48(1): 66-73.
[9].郑二杰, 李恒, 邢峰. 基于PLC控制的激光沉积制造TC4钛合金组织与性能研究[J]. 应用激光, 2023, 43(8): 70-77.
[10].石晓平, 王广青, 李恒, 等. 含Er焊丝对基于PLC控制的激光焊接头的影响[J]. 应用激光, 2022, 42(11): 8-15.
[11].Zhang J B, Wu Y C, Zhang Z Y, et al. Picosecond laser remelting of electrodeposited Ni[ sbnd]P coating: Parameters optimization and electrochemical corrosion behavior[J]. Surface & Coatings Technology, 2023, 471: 129877-129884.
[12].Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 2021, 134: 106619-106625.
[13].刘明霞, 李昭, 畅庚榕, 等. 激光重熔对高速激光熔覆Ni625合金涂层组织和耐蚀性的影响[J]. 材料热处理学报, 2022, 43(8): 153-160.
[14].Yang G W, Fu B G, Dong T S, et al. Effect of laser remelting on the microstructure and properties of the aluminum high silicon alloy coating[J]. Journal of Materials Processing Tech., 2024, 324: 118278-118283.
[15].熊庭超, 殷延益, 陆丹华, 等. 激光重熔/电化学沉积交互处理铜涂层的微观组织及机理研究[J]. 中国激光, 2023, 50(4): 67-79.
[16].张志虎, 孙文磊, 黄勇, 等. 高速激光熔覆和重熔复合技术制备铁基涂层的组织性能研究[J]. 激光与光电子学进展, 2021, 58(21): 206-213.
[17].Szajna E, Moskal G, Tupaj M, et al. The influence of laser remelting on microstructural changes and hardness level of flame-sprayed NiCrBSi coatings with tungsten carbide addition[J]. Surface & Coatings Technology, 2024, 478: 130403-130410.
[18].Wu Y C, Zhang Z Y, Zhu H, et al. Morphology evolution and corrosion performance evaluation of the amorphous Ni-P coating prepared by picosecond LECD and modified by nanosecond laser remelting[J]. Optics and Laser Technology, 2022, 151: 108026-108033.
[19].Fan J, Zhu T Q, Kuang Y L, et al. Superhydrophobic copper coating with ultrahigh corrosion resistance by electrodeposition process in a deep eutectic solvent[J]. Chemical Physics Letters, 2023, 811: 140197-140204.
[20].An Y D, Zheng S X, Pang X M, et al. Effect of laser remelting on copper nickel alloy coating prepared by extreme high-speed laser cladding[J]. Journal of Manufacturing Processes, 2023, 95: 497-507.