Bian Meihua,Peng Jianing*,He Yuyin,et al.A rapid evaluation method for corrosion resistance of galvanized steel layer for transmission tower materials[J].Plating & Finishing,2025,(02):54-60.
doi: 10.3969/j.issn.1001-3849.2025.02.008输电杆塔材料镀锌钢层耐腐蚀性的快速评价探究
- Title:
- A rapid evaluation method for corrosion resistance of galvanized steel layer for transmission tower materials
- 分类号:
- TQ139.1
- 文献标志码:
- A
- 摘要:
- 输电杆塔是输电线路的重要部分,它在服役过程中需要承受诸多荷载,特别是在工业区和沿海地区,输电杆塔材料的腐蚀问题尤为突出,产生了极大的安全隐患。采用自制的定点腐蚀装置及室内浸泡腐蚀试验方法,将镀锌钢表面的锌镀层在酸性腐蚀溶液中溶解,游离出的亚铁离子(Fe2+)被氧化剂氧化为Fe3+;通过Fe3+与磺基水杨酸(SSal)发生显色反应,利用分光光度计在线检测溶液中的Fe3+;通过游离出Fe3+所需要的时间来评价镀锌层的耐腐蚀性能;利用扫描电镜(SEM)和X射线衍射仪(XRD)分析镀锌钢表面腐蚀产物的形貌和组成。结果显示:腐蚀溶溶pH=1.0~3.0时,可在3 h内评价镀锌钢的耐腐蚀性能,该研究为输电杆塔的合理选材和预测材料寿命提供了重要参考。
- Abstract:
- Transmission tower is an important part of the transmission line, it needs to bear a lot of loads in the service process, especially in industrial areas and coastal areas, the corrosion of transmission tower materials is particularly prominent, resulting in great security risks. The corrosion behavior of galvanized layer on the surface of galvanized steel structural parts of power grid equipment was studied by using a self-made fixed point corrosion device and indoor immersion corrosion test method. The zinc coating on the surface of galvanized steel was dissolved in acid corrosion solution, and the free ferrous ions (Fe2+) were oxidized to Fe3+ by oxidants. The chromogenic reaction of Fe 3+ with sulfosalicylic acid ( SSal) was carried out to detect Fe3+ in the solution by spectrophotometer. The corrosion resistance of galvanized layer was evaluated by the time required for Fe 3+ ionization. The surface corrosion morphology and composition of corrosion product of galvanized steel were studied by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The results show that when the pH of corrosion solution is 1.0-3.0, the corrosion resistance of the galvanized steel plate commonly used in the market can be evaluated within 3 h. This study provides an important reference for reasonable material selection and material life prediction of transmission tower
参考文献/References:
[1].刘孟磊. 高腐蚀环境下输变电设施的金属腐蚀机理研究[D]. 贵州: 贵州大学, 2023.
[2].高岩, 黄殷辉, 郑志军. Q235钢在广东省输电杆塔现场的大气腐蚀行为[J]. 华南理工大学学报(自然科学版), 2018, 46(7): 39-46.
[3].刘昌帅, 董泽才, 王若民. 工业污染区输电铁塔构件的大气腐蚀与防护[J]. 合肥工业大学学报(自然科学版), 2023, 46(7): 906-911.
[4].蒋武斌, 孟晓波, 廖永力. 输电杆塔材料在海洋大气环境中的初期腐蚀行为[J]. 热加工工艺, 2017, 46(12): 99-103.
[5].王贵, 李位. 分光光度法测定水中总铁含量的探讨[J]. 山东化工, 2017, 46(4): 80-83.
[6].田旭, 李想, 裴锋, 等. 镀锌钢和碳钢在江西省的大气腐蚀行为[J]. 热加工工艺, 2023, 52(8): 32-38.
[7].李博. 提高TC6钛合金零件镀铬层结合力的方法[J]. 电镀与精饰, 2014, 36(3): 26-28.
[8].陈俊超, 张林海. 工艺参数对Q345钢锌系磷化膜耐腐蚀性能的影响[J]. 电镀与精饰, 2020, 42(8): 329-333.
[9].程秀花, 吴胜杰. 磺基水杨酸光度法快速测定锰矿石中铁[J]. 冶金分析, 2014, 34(2): 74-78.
[10].张天斌, 李政, 许海. 水溶液中5-磺基水杨酸合铁(Ⅲ)配合物组成的测定[J]. 化学教育, 2014, 35(4): 21-24.
[11].Qi Y M, Luo H Y, Zheng S Q, et al. Effect of temperature on the corrosion behavior of carbon steel in hydrogen sulphide environments[J]. International Journal of Electrochemical Science, 2014, 9: 2101-2112.
[12].Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corrosion Science, 2007, 51: 997-1106.
[13].张琳, 赵春英, 王振尧, 等. 模拟工业大气环境中碳钢和耐候钢的腐蚀行为研究[J]. 电镀与精饰, 2015, 37(4): 265-270.
[14].Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J]. Materials Degradation, 2017, 1(1): 1-10.
[15].Kim Y H, Yoo M H, Moon M S. Effects of surface roughness on the electrochemical properties and galvanic corrosion behavior of CFRP and SPCC alloy[J]. Materials, 2020, 13: 4211-4231.
[16].Jin S Y, Ma X C, Wu R Z, et al. Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29: 1453-1463.
[17].陈琴, 余敏, 葛洁洁, 等. 冷喷涂Al基复合涂层的制备及耐蚀性能研究[J]. 材料保护, 2022, 55(1): 44-49.
[18].张立平, 刘庆然, 何小兵, 等. 封孔-成膜工艺对电镀薄镍层耐蚀性能的影响[J]. 电镀与精饰, 2022, 44(2): 56-59.
[19].Poza P, Garrido-Maneiro M A. Cold-sprayed coatings: Microstructure, mechanical properties, and wear behaviour[J]. Progress in Materials Science, 2022, 123(1): 100839.1-100839.35.
[20].吴芳, 王伟. 化学镀Co-P和Co-Mo-P薄膜的结构与耐腐蚀性能[J]. 电镀与精饰, 2022, 44(4): 7-10.
[21].Shozib I A, Ahmad A, Abdul-Rani A M, et al. A review on the corrosion resistance of electroless Ni-P based composite coatings and electrochemical corrosion testing methods[J]. Corrosion Reviews, 2022, 40(1): 1-37.
相似文献/References:
[1]桂根生*.车用镀锌钢多维腐蚀分析与评估应用研究[J].电镀与精饰,2021,(12):23.[doi:10.3969/j.issn.1001-3849.2021.12.005]
GUI Gensheng*.Application Research on Multi-dimensional Corrosion Analysis and Evaluation of Galvanized Steel for Automobile[J].Plating & Finishing,2021,(02):23.[doi:10.3969/j.issn.1001-3849.2021.12.005]