Pei Liefei,Liu Ziyi,Yuan Zizhou*.Research status of iron-based amorphous materials for efficient treatment of industrial wastewater[J].Plating & Finishing,2025,(02):74-81.
doi: 10.3969/j.issn.1001-3849.2025.02.011铁基非晶材料高效处理工业废水的研究现状
- Title:
- Research status of iron-based amorphous materials for efficient treatment of industrial wastewater
- Keywords:
- amorphous alloy; industrial wastewater; direct reduction; indirect oxidation; reaction activity
- 分类号:
- X52
- 文献标志码:
- A
- 摘要:
- 原子无序堆积的非晶合金(MGs)作为环境功能材料应用于工业废水的处理是近年来水处理领域研究的热点。本文综述了铁基非晶合金(Fe-MGs)处理染料、重金属以及其他各类废水的研究现状。按照Fe-MGs与污染物之间电子传递方式的不同,探究了直接还原和间接氧化两种降解机理。通过与零价铁(ZVI)的对比分析得到,Fe-MGs具有较高反应活性的原因在于其较低的激活能、较负的氧化还原电位、特殊的能带结构以及疏松的产物层。并指出当前研究中仍存在着理论研究不足、金属离子浸出和实验条件单一等问题,在此基础上提出了合理的建议和 展望。
- Abstract:
- The application of disordered atomic stacking amorphous alloy (MGs) as an environmental functional material in the treatment of industrial wastewater is a hot topic in the field of water treatment in recent years. The research status of iron-based amorphous alloy (Fe-MGs) in the treatment of dyes, heavy metals and other kinds of wastewater was reviewed in this article. The degradation mechanisms of direct reduction and indirect oxidation were emphasized. Compared with zero valent iron (ZVI), it is found that Fe-MGs has higher reactivity because of its lower activation energy, negative redox potential, special band structure and loose product layer. However, there are still some problems in the process of Fe-MGs wastewater treatment, such as insufficient theoretical research, metal ion leaching and single experimental conditions. Finally, some reasonable suggestions are put forward according to the limitations of the current research situation
参考文献/References:
[1].环境保护部. 2008年全国环境统计公报[N]. 中国环境报, 2009-09-30.
[2].赵丹华, 蔡伟文, 何伟发, 等. 环境功能材料在阳离子染料废水处理中的应用研究进展[J]. 化学与生物工程, 2014, 31(7): 1-4.
[3].武兰民, 程灵, 邱宁, 等. 配电变压器用非晶合金的研究进展及应用前景[J]. 热加工工艺, 2020, 49(12): 5-10.
[4].Si J J, Gu J L, Luan H W, et al. Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye[J]. Journal of Hazardous Materials, 2020, 388: 122043.
[5].Sun H J, Zheng H, Yang X H. et al. Efficient degradation of orange II dye using Fe-based metallic glass powders prepared by commercial raw materials[J]. Intermetallics, 2021, 129: 107030.
[6].Zhang X J, Wen H, Shi J X, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes[J]. Nano Research, 2010, 3(9): 643-652.
[7].Luals G V G A, Claudio J, Daslva, Jose P R. Glass forming ability and alloying effect of a noble-metal-based glass former[J]. The Journal of Physical Chemistry, 2012, 116(4): 1356-1359.
[8].Jia Z. Duan X G, Qin P, et al. Disordered atomic packing structure of metallic glass: Toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance[J]. Advanced Functional Materials, 2017, 27(38): 1702254.
[9].Zhang C Q, Zhu Z W, Zhang H F, et al. On the decolorization property of Fe-Mo-Si-B alloys with different structures[J]. Journal of Non-Crystalline Solids, 2012, 358(1): 61-64.
[10].Chang Q Z, Zheng W Z, Hai F Z, et al. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron[J]. Journal of Hazardous Materials, 2007, 145(1-2): 305-314.
[11].Zhang C Q, Zheng W, Zhu H F, et al. Rapid decolorization of acid orange Ⅱ aqueous solution by amorphous zero- valent iron[J]. Journal of Environmental Sciences, 2012, 24(6): 1021-1026.
[12].Zhang C Q, Zhu H F, Men Q L, et al. Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy[J]. Journal of Non-Crystalline Solids , 2010, 356(33 /34): 1703-1706.
[13].Zhe J, Qing W, Sun L G, et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance[J]. Advanced Functional Materials, 2019, 29(19): 1-9.
[14].Liang S X, Zhe J, Wang W M, et al. Rapid malachite green degradation using Fe 73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV-Vis light[J]. Materials & Design, 2017, 119: 244-253.
[15].Zeng D M, Dan Z H, Qin F X, et al. Adsorption-enhanced reductive degradation of methyl orange by Fe73.3Co10Si4B8P4Cu0.7 amorphous alloys[J]. Materials Chemistry and Physics, 2019, 242: 122307.
[16].Deng Z, Zhang X H, Chan K C, et al. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation[J]. Chemosphere, 2017, 174: 76-81.
[17].Zhang C Q, Zhu Z W, Zhang H F, et al. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys[J]. Science Bulletin, 2011, 56(36): 3988-3992.
[18].Qin X D, Li Z K, Zhu Z W, et al. Mechanism and kinetics of treatment of acid orange II by aged Fe-Si-B metallic glass powders[J]. Journal of Materials Science & Technology, 2017, 33(10): 1147-1152.
[19].Herney R, Miguel A V, Luis M M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review[J]. Applied Catalysis B: Environment and Energy, 2010, 98(1-2): 10-26.
[20].Huom F, Liao L, Zhang W D, et al. Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2[J]. Chemosphere, 2011, 83: 1279-1283.
[21].Juergen P, Ulf T, Tadeusa G, et al. Formation of chlorinated biphenyls, diphenyl ethers and benzofurans as a result of Fenton-driven oxidation of 2-chlorophenol[J]. Chemosphere, 2009, 75(6): 772-780.
[22].Wang X F, Pan Y, Zhu Z R, et al. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process[J]. Chemosphere, 2014, 117: 638-643.
[23].Jia Z, Duan X G, Zhang W C, et al. Ultra-sustainable Fe 78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light[J]. Scientific Reports, 2016, 6(1): 38520.
[24].Jia Z, Liang S X, Wang W M, et al. Heterogeneous photo fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe 78Si9B13 and Fe 73.5Si13.5B9Cu1Nb3 alloys: The influence of adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 128-136.
[25].Jia Z, Li X F, Liang S X, et al. Rapid decolorization and mineralization of congo red using Fe 78Si9B13 amorphous alloy by photo fenton-like process[J]. Materials in Environmental Engineering, 2017, 23: 761-772.
[26].Liang S X, Jia Z, Wang W M, et al. Rapid malachite green degradation using Fe 73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV-Vis light[J]. Materials & Design, 2017, 119: 244-253.
[27].Jia Z, Duan X G, Zhang W C, et al. Ultra-sustainable Fe 78Si9B13 metallic glass as a catalyst for activation of persulfate on methyleneblue degradation under UV-Vis light[J]. Scientific Reports, 2016, 6: 38520.
[28].Zhang C Q, Zhu Z W, Zhang H F, et al. Rapid decolorization of acid orange II aqueous solution by amorphous zero- valent iron[J]. Journal of Environmental Sciences, 2012, 6(24): 1021-1026.
[29].Weng N, Wang F, Qin F X, et al. Enhanced azo-dyes degradation performance of Fe-Si-B-P nanoporous architecture[J]. Materials, 2017, 10(9): 1001-1013.
[30].Zhang C Q, Zhu Z W, Zhang H F, et al. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys[J]. Science Bulletin, 2011, 56(36): 5-10.
[31].Mielczarskl J A, Atenas G M, Mielczarskl E. Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions[J]. Applied Catalysis B: Environment and Energy, 2005, 56(4): 289-303.
[32].唐尧. 铁基非晶合金制备及偶氮染料降解性能研究[D]. 北京: 清华大学, 2015.
[33].Uchaker E, Zheng Y Z, Li S, et al. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18208-18214.
[34].Yan Y Q, Liang X, Ma J, et al. Rapid removal of copper from wastewater by Fe-based amorphous alloy[J]. Intermetallics, 2020, 124: 106849.
[35].杜进英, 张香云, 袁子洲, 等. Fe-Si-B非晶合金去除水中Pb(Ⅱ)的性能及机理研究[J]. 有色金属(冶炼部分), 2020, 10: 64-69.
[36].李金祺. Fe-Si-B非晶合金去除水中Cu(Ⅱ)和Ni(Ⅱ)的性能研究[D]. 兰州: 兰州理工大学, 2019.
[37].Zhang X Y, Liu J K, Li J Q, et al. Excellent capability in remediating Cu2+ from aqueous solution by Fe-Si-B amorphous alloys[J]. Applied Physics A, 2020, 126(4): 291.
[38].袁明强. Fe78Si9B13非非晶合金去除水中Cr(VI)和As(III)的性能及机理研究[D]. 兰州: 兰州理工大学, 2020.
[39].中国环境科学研究院 GB 3838-2002, 地表水环境质量标准[S]. 北京: 国家标准馆, 2002.
[40].Liang S X, Zhang W C,Zhang Lin, et al. Remediation of