PDF下载 分享
[1]裴烈飞,刘子仪,袁子洲*.doi: 10.3969/j.issn.1001-3849.2025.02.011铁基非晶材料高效处理工业废水的研究现状[J].电镀与精饰,2025,(02):74-81.
 Pei Liefei,Liu Ziyi,Yuan Zizhou*.Research status of iron-based amorphous materials for efficient treatment of industrial wastewater[J].Plating & Finishing,2025,(02):74-81.
点击复制

doi: 10.3969/j.issn.1001-3849.2025.02.011铁基非晶材料高效处理工业废水的研究现状

参考文献/References:

[1].环境保护部. 2008年全国环境统计公报[N]. 中国环境报, 2009-09-30.
[2].赵丹华, 蔡伟文, 何伟发, 等. 环境功能材料在阳离子染料废水处理中的应用研究进展[J]. 化学与生物工程, 2014, 31(7): 1-4.
[3].武兰民, 程灵, 邱宁, 等. 配电变压器用非晶合金的研究进展及应用前景[J]. 热加工工艺, 2020, 49(12): 5-10.
[4].Si J J, Gu J L, Luan H W, et al. Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye[J]. Journal of Hazardous Materials, 2020, 388: 122043.
[5].Sun H J, Zheng H, Yang X H. et al. Efficient degradation of orange II dye using Fe-based metallic glass powders prepared by commercial raw materials[J]. Intermetallics, 2021, 129: 107030.
[6].Zhang X J, Wen H, Shi J X, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes[J]. Nano Research, 2010, 3(9): 643-652.
[7].Luals G V G A, Claudio J, Daslva, Jose P R. Glass forming ability and alloying effect of a noble-metal-based glass former[J]. The Journal of Physical Chemistry, 2012, 116(4): 1356-1359.
[8].Jia Z. Duan X G, Qin P, et al. Disordered atomic packing structure of metallic glass: Toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance[J]. Advanced Functional Materials, 2017, 27(38): 1702254.
[9].Zhang C Q, Zhu Z W, Zhang H F, et al. On the decolorization property of Fe-Mo-Si-B alloys with different structures[J]. Journal of Non-Crystalline Solids, 2012, 358(1): 61-64.
[10].Chang Q Z, Zheng W Z, Hai F Z, et al. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron[J]. Journal of Hazardous Materials, 2007, 145(1-2): 305-314.
[11].Zhang C Q, Zheng W, Zhu H F, et al. Rapid decolorization of acid orange Ⅱ aqueous solution by amorphous zero- valent iron[J]. Journal of Environmental Sciences, 2012, 24(6): 1021-1026.
[12].Zhang C Q, Zhu H F, Men Q L, et al. Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy[J]. Journal of Non-Crystalline Solids , 2010, 356(33 /34): 1703-1706.
[13].Zhe J, Qing W, Sun L G, et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance[J]. Advanced Functional Materials, 2019, 29(19): 1-9.
[14].Liang S X, Zhe J, Wang W M, et al. Rapid malachite green degradation using Fe 73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV-Vis light[J]. Materials & Design, 2017, 119: 244-253.
[15].Zeng D M, Dan Z H, Qin F X, et al. Adsorption-enhanced reductive degradation of methyl orange by Fe73.3Co10Si4B8P4Cu0.7 amorphous alloys[J]. Materials Chemistry and Physics, 2019, 242: 122307.
[16].Deng Z, Zhang X H, Chan K C, et al. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation[J]. Chemosphere, 2017, 174: 76-81.
[17].Zhang C Q, Zhu Z W, Zhang H F, et al. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys[J]. Science Bulletin, 2011, 56(36): 3988-3992.
[18].Qin X D, Li Z K, Zhu Z W, et al. Mechanism and kinetics of treatment of acid orange II by aged Fe-Si-B metallic glass powders[J]. Journal of Materials Science & Technology, 2017, 33(10): 1147-1152.
[19].Herney R, Miguel A V, Luis M M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review[J]. Applied Catalysis B: Environment and Energy, 2010, 98(1-2): 10-26.
[20].Huom F, Liao L, Zhang W D, et al. Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2[J]. Chemosphere, 2011, 83: 1279-1283.
[21].Juergen P, Ulf T, Tadeusa G, et al. Formation of chlorinated biphenyls, diphenyl ethers and benzofurans as a result of Fenton-driven oxidation of 2-chlorophenol[J]. Chemosphere, 2009, 75(6): 772-780.
[22].Wang X F, Pan Y, Zhu Z R, et al. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process[J]. Chemosphere, 2014, 117: 638-643.
[23].Jia Z, Duan X G, Zhang W C, et al. Ultra-sustainable Fe 78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light[J]. Scientific Reports, 2016, 6(1): 38520.
[24].Jia Z, Liang S X, Wang W M, et al. Heterogeneous photo fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe 78Si9B13 and Fe 73.5Si13.5B9Cu1Nb3 alloys: The influence of adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 128-136.
[25].Jia Z, Li X F, Liang S X, et al. Rapid decolorization and mineralization of congo red using Fe 78Si9B13 amorphous alloy by photo fenton-like process[J]. Materials in Environmental Engineering, 2017, 23: 761-772.
[26].Liang S X, Jia Z, Wang W M, et al. Rapid malachite green degradation using Fe 73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV-Vis light[J]. Materials & Design, 2017, 119: 244-253.
[27].Jia Z, Duan X G, Zhang W C, et al. Ultra-sustainable Fe 78Si9B13 metallic glass as a catalyst for activation of persulfate on methyleneblue degradation under UV-Vis light[J]. Scientific Reports, 2016, 6: 38520.
[28].Zhang C Q, Zhu Z W, Zhang H F, et al. Rapid decolorization of acid orange II aqueous solution by amorphous zero- valent iron[J]. Journal of Environmental Sciences, 2012, 6(24): 1021-1026.
[29].Weng N, Wang F, Qin F X, et al. Enhanced azo-dyes degradation performance of Fe-Si-B-P nanoporous architecture[J]. Materials, 2017, 10(9): 1001-1013.
[30].Zhang C Q, Zhu Z W, Zhang H F, et al. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys[J]. Science Bulletin, 2011, 56(36): 5-10.
[31].Mielczarskl J A, Atenas G M, Mielczarskl E. Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions[J]. Applied Catalysis B: Environment and Energy, 2005, 56(4): 289-303.
[32].唐尧. 铁基非晶合金制备及偶氮染料降解性能研究[D]. 北京: 清华大学, 2015.
[33].Uchaker E, Zheng Y Z, Li S, et al. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18208-18214.
[34].Yan Y Q, Liang X, Ma J, et al. Rapid removal of copper from wastewater by Fe-based amorphous alloy[J]. Intermetallics, 2020, 124: 106849.
[35].杜进英, 张香云, 袁子洲, 等. Fe-Si-B非晶合金去除水中Pb(Ⅱ)的性能及机理研究[J]. 有色金属(冶炼部分), 2020, 10: 64-69.
[36].李金祺. Fe-Si-B非晶合金去除水中Cu(Ⅱ)和Ni(Ⅱ)的性能研究[D]. 兰州: 兰州理工大学, 2019.
[37].Zhang X Y, Liu J K, Li J Q, et al. Excellent capability in remediating Cu2+ from aqueous solution by Fe-Si-B amorphous alloys[J]. Applied Physics A, 2020, 126(4): 291.
[38].袁明强. Fe78Si9B13非非晶合金去除水中Cr(VI)和As(III)的性能及机理研究[D]. 兰州: 兰州理工大学, 2020.
[39].中国环境科学研究院 GB 3838-2002, 地表水环境质量标准[S]. 北京: 国家标准馆, 2002.
[40].Liang S X, Zhang W C,Zhang Lin, et al. Remediation of

更新日期/Last Update: 2025-02-19