Li Xianyang,Xie Changjiang.Effect of combined additives on microstructure and mechanical properties of electrodeposited ultra-thin copper foil Lin Xiaoyan1, Xu Hongbiao2*, Zhang Jiayi1, Yin Xin1, Wang Ximi1,[J].Plating & Finishing,2025,(02):111-117.
doi: 10.3969/j.issn.1001-3849.2025.02.017组合添加剂对电解沉积超薄铜箔组织和力学性能的影响
- Title:
- Effect of combined additives on microstructure and mechanical properties of electrodeposited ultra-thin copper foil Lin Xiaoyan1, Xu Hongbiao2*, Zhang Jiayi1, Yin Xin1, Wang Ximi1,
- Keywords:
- SPS; collagen protein; ultra-thin copper foil; grain
- 分类号:
- TB31;TG146.1+1
- 文献标志码:
- A
- 摘要:
- 为解决超薄铜箔的力学性能差的问题,采用了XRD、SEM、EBSD和万能试验机等方法,研究了聚二硫二丙烷磺酸钠(SPS)和胶原蛋白的组合添加及其浓度配比对铜箔的微观形貌与力学性能的影响。结果表明,添加 5 mg/L SPS及10 mg/L胶原蛋白的铜箔呈现(111)择优取向,该配比下的铜箔表面最为平整,晶粒最细小,尺寸为0.3~4.3 μm。添加5 mg/L SPS及10 mg/L胶原蛋白的铜箔比无添加的铜箔的抗拉强度高59 MPa。所以,SPS与胶原蛋白的协同作用使铜沉积地更均匀,从而获得更加平整的形貌和较小粗糙度值的铜箔。
- Abstract:
- In order to solve the problem of poor mechanical properties of ultra-thin copper foil, the methods of XRD, SEM, EBSD and universal testing machine were used, and the effects of sodium polysulfide dipropane sulfonate (SPS) and collagen on the microstructure and mechanical properties of copper foil were studied. The results showed that the copper foil with 5 mg/L SPS and 10 mg/L collagen exhibited (111) preferred orientation, thus exhibiting the smoothest surface morphology of the copper foil with this ratio and the smallest grain size ranging from 0.3 to 4.3 μm. The tensile strength of copper foil with 5 mg/L SPS and 10 mg/L collagen was 59 MPa, higher than that without SPS. Therefore, the synergistic effect of SPS and collagen made the deposition of copper more uniform, contributing to a flatter morphology and a lower roughness of copper foil
参考文献/References:
[1].郭立功. 电解铜箔添加剂的研究现状和发展方向[J]. 中国金属通报, 2021(23): 7-9.
[2].赖福林, 王玉琴, 马全新, 等. LiClO4预氧化Ni0.8Co0.17Al0.03(OH)2提升锂离子电池的循环稳定性[J]. 有色金属科学与工程, 2023, 14(1): 57-66.
[3].张克, 刘冬雪, 文敏, 等. 锂离子电池用氧化钨负极材料的改性[J]. 有色金属科学与工程, 2022, 13(6): 74-83.
[4].王帅. 我国电解铜箔技术现状与趋势前瞻[J]. 有色金属加工, 2023, 52(1): 9-11.
[5].樊小伟. 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究[D]. 赣州: 江西理工大学, 2022.
[6].程庆, 李宁, 潘钦敏, 等. 电解铜箔添加剂的研究进展及应用现状[J]. 电镀与精饰, 2022, 44(12): 69-79.
[7].Liao J, Wang L, Song N, et al. Preparation, micro-structure and characterization of high strength and low profile lithium copper foil with SPS and HP additives[J]. Materials Science and Engineering: B, 2024, 299: 11696.
[8].师慧娟, 陆冰沪, 樊小伟, 等. 电解铜箔表面处理技术及添加剂研究进展[J]. 中国有色金属学报, 2021, 31(5): 1270-1284.
[9].胡增开. 添加剂对提升极薄锂电铜箔延伸率的研究[J]. 化工管理, 2022(20): 141-143.
[10].付赞辉,陆峰. 添加剂对电解铜箔拉伸性能的影响[J]. 世界有色金属, 2021(14): 11-12.
[11].刘耀. 极薄载体铜箔制备及高抗剥离表面处理技术研究[D]. 赣州: 江西理工大学, 2023.
[12].Tan M, Harb J N. Additive behavior during copper electrodeposition in solutions containing Cl ?, PEG, and SPS[J]. Journal of The Electrochemical Society, 2003, 150(6): C420.
[13].袁智斌. 锂电池用8微米超薄双面光电解铜箔工艺研究[D]. 南昌: 南昌大学, 2014.
[14].宋言, 朱若林, 代泽宇, 等. 类硫脲结构添加剂在电解铜箔制备中的应用[J]. 电镀与涂饰, 2022, 41(17): 1245-1249.
[15].杨森, 王文昌, 张然, 等. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学, 2022, 28(6): 94-105.
[16].GB/T5230-2020, 印制板用电解铜箔[S]. 2020-09-29.
[17].王媛媛, 裴晓哲, 樊斌锋. 高性能双光锂电铜箔低翘曲工艺研究[J]. 冶金与材料, 2018, 38(4): 117-118.
[18].Turner D R, Johnson G R. The effect of some addition agents on the kinetics of copper electrodeposition from a sulfate solution: I. Cathode potential‐current density relation[J]. Journal of the Electrochemical Society, 1962, 109(9): 798.
[19].易光斌. 电解铜箔组织性能及其翘曲产生机理研究[D]. 南昌: 南昌大学, 2014.
[20].何安民, 邵建立, 王裴, 等. 单晶Cu(001)薄膜塑性变形的分子动力学模拟[J]. 物理学报, 2010, 59(12): 8836-8842.