Xiao Longhui,HeWei,Pi Yiming,et al.Investigation of the mechanism and application of azo dye additives in copper electrodeposition[J].Plating & Finishing,2025,(03):1-9.
doi: 10.3969/j.issn.1001-3849.2025.03.001偶氮类染料添加剂在铜电沉积中的机理和应用研究
- Title:
- Investigation of the mechanism and application of azo dye additives in copper electrodeposition
- 分类号:
- TQ153.1
- 文献标志码:
- A
- 摘要:
- 铜电沉积是高密度互连印制电路中实现电气连接的主要方式,电沉积铜层质量直接影响到层间互连和信号传输稳定性。有机添加剂在金属电沉积过程中能够通过特征官能团在电极表面电流密度较高区域的吸附作用调控阴极表面的电流分布,提高镀液的均镀能力和微观整平能力。在铜电沉积过程中,偶氮类化合物中与苯环相连的氮-氮双键被认为是发挥调控作用的关键基团,因此采用直接黄86、灿烂黄和活性嫩黄3G-P三种偶氮类染料作为电沉积铜添加剂。采用电化学和量子化学方法探究了3种添加剂的化学性质及其在铜电沉积过程中的作用机制,通过哈林槽实验研究了3种偶氮类染料添加剂对金属铜镀层的影响,分析了3种添加剂对通孔电沉积效果,并通过电镀通孔的均匀性评估了添加剂作用下镀液的均镀能力(Throwing Power,TP),实现厚径比为10∶1通孔的TP值达92.03%。
- Abstract:
- Copper electrodeposition is the primary method for achieving electrical connections in high-density interconnect (HDI) printed circuit boards, and the quality of the electrodeposited copper layer directly impacts interlayer interconnection and signal transmission stability. Organic additives can regulate the current distribution on the cathode surface through the adsorption of characteristic functional groups in regions with higher current densities during metal electrodeposition, thereby enhancing the leveling and micro-smoothing capabilities of the plating solution. In copper electrodeposition, the nitrogen-nitrogen double bond linked to the benzene ring in azo compounds is considered a crucial functional group that exerts regulatory effects. Consequently, three azo dyes, namely Direct Yellow 86, Brilliant Yellow, and Cibacron Brilliant Yellow 3G-P, were selected as additives for copper electrodeposition. Electrochemical tests and quantum chemical methods were employed to investigate the chemical properties of these three additives and their mechanisms of action during copper electrodeposition. Hull cell experiments were conducted to study the effects of these azo dye additives on the copper metal coating. Furthermore, the impact of the three additives on the plating of through-holes during copper electrodeposition was analyzed, and the uniformity of plated through-holes was used to evaluate the throwing power (TP) of the plating solution under the influence of different additives. As a result, a TP value of 92.03% was achieved for through-holes with an aspect ratio of 10∶1.
参考文献/References:
[1].Zhang Y, An M, Yang P, et al. Recent advances in electroplating of through-hole copper interconnection[J]. Electrocatalysis, 2021, 12(6): 619-627.
[2].Huang B C, Yang C H, Lee C Y, et al. Effect of pulse-reverse plating on copper: Thermal mechanical properties and microstructure relationship[J]. Microelectronics Reliability, 2019, 96: 71-77.
[3].Mariani E, Giurlani W, Bonechi M, et al. A systematic study of pulse and pulse reverse plating on acid copper bath for decorative and functional applications[J]. Scientific Reports, 2022, 12(1): 18175.
[4].王维仁, 伊洪坤. 一种阴极可移动的PCB电镀槽: 中国, 201220649045.8[P]. 2013-06-19.
[5].黄雪理. 一种PCB板加工用均匀电镀设备及方法: 中国, 202410076960.X[P]. 2024-04-16.
[6].窦泽坤, 赵新泽, 冯庆, 等. 一种用于PCB水平电镀工序中的喷淋装置: 中国,201922424121.X[P]. 2020-11-03.
[7].易华东. 一种PCB图形电镀线高位喷淋装置: 中国, 201921307271.6[P]. 2020-04-28.
[8].Wang C, Zhang J, Yang P, et al. Electrochemical behaviors of Janus Green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison[J]. Electrochimica Acta, 2013, 92: 356-364.
[9].Lai Z, Wang S, Wang C, et al. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Computational Materials Science, 2018, 147: 95-102.
[10].Lai Z, Wang S, Wang C, et al. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochimica Acta, 2018, 273: 318-326.
[11].Dow W P, Li C C, Su Y C, et al. Microvia filling by copper electroplating using diazine black as a leveler[J]. Electrochimica Acta, 2009, 54(24): 5894-5901.
[12].Li Y B, Wang W, Li Y L. Adsorption behavior and related mechanism of Janus Green B during copper via-filling process[J]. Journal of The Electrochemical Society, 2009, 156(4): D119.
[13].Bulat F A, Toro-Labbé A, Brinck T, et al. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies[J]. Journal of Molecular Modeling, 2010, 16(11): 1679-1691.
[14].Khan S, Nandi C K. Optimizing the underlying parameters for protein-nanoparticle interaction: advancement in theoretical simulation[J]. Nanotechnology Reviews, 2014, 3(4): 347-359.
[15].Murray J S, Politzer P. The electrostatic potential: an overview[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1(2): 153-163.
[16].Fu R, Lu T, Chen F W. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 628-639.
[17].Lou Q, Li T, Yang M. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel [J]. Acta Physica Sinica, 2018, 67(23): 1-13.
[18].Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[19].Moffat T P, Wheeler D, Josell D. Electrodeposition of