Hu Xiaoqiang,Fang Zheng*.Simulation study of tetranitro-tetrazolium blue inhibitor in copper electroplating for printed circuit boards vias Yang Guangzhu1, XieJun1, Chen Dedeng1, Lei Yi1, Wei Xiangfu1,2,[J].Plating & Finishing,2025,(03):39-46.
doi: 10.3969/j.issn.1001-3849.2025.03.006电路板通孔电镀铜四硝基四氮唑蓝抑制剂的模拟研究
- Title:
- Simulation study of tetranitro-tetrazolium blue inhibitor in copper electroplating for printed circuit boards vias Yang Guangzhu1, XieJun1, Chen Dedeng1, Lei Yi1, Wei Xiangfu1,2,
- 分类号:
- TQ153.14
- 文献标志码:
- A
- 摘要:
- 采用模拟与实验方法研究了四硝基四氮唑蓝(TNBT)抑制剂对柔性电路板浅通孔电镀铜的均镀能力(TP)的影响。首先采用分子动力学(MD)模拟研究了TNBT抑制剂在Cu(111)表面的吸附行为,进一步使用密度泛函理论(DFT)计算揭示了TNBT抑制剂的吸附机制,最后通过电镀实验探明了TNBT抑制剂对通孔电镀TP值的影响规律。结果表明:TNBT分子主要通过苯甲醚和硝基苯等活性位点与Cu(111)表面发生化学吸附作用;TNBT分子的吸附行为主要由其前沿分子轨道分布的官能团所主导;TNBT分子展现较强的铜沉积抑制作用,并显著提高浅通孔电镀的TP值。该抑制剂有效克服了传统添加剂过度依赖对流环境的缺点,能满足浅通孔的超高TP值电镀要求。
- Abstract:
- This study employs both simulation and experimental methods to investigate the impact of the tetranitrotetrazole blue (TNBT) inhibitor on the throwing power (TP) of copper electroplating in shallow through-holes of flexible printed circuit boards. Initially, molecular dynamics (MD) simulations were utilized to examine the adsorption behavior of TNBT inhibitors on the Cu(111) surface. Subsequently, density functional theory (DFT) calculations were conducted to elucidate the adsorption mechanism of TNBT inhibitors. Finally, electroplating experiments were performed to determine the influence of TNBT inhibitors on the TP values in through-hole electroplating. The results indicate that TNBT molecules primarily undergo chemical sorption on the Cu(111) surface through active sites such as benzyl ether and nitrobenzene groups. The adsorption behavior of TNBT molecules is primarily governed by the functional groups distributed in their frontier molecular orbitals.The TNBT molecules exhibit a strong inhibition effect on copper deposition, and significantly enhancing the TP value in shallow through-hole electroplating. This inhibitor successfully addresses the limitations of traditional additives that heavily depend on the convective environment, thereby meeting the ultra-high TP value requirements for shallow through-hole electroplating
参考文献/References:
[1].Zhu Y M, Chen X, Chang Y, et al. Fabrication of double-sided FPC by hydrolyzing-doping-plating additive process[J]. Journal of the Electrochemical Society, 2018, 165(10): 494-499.
[2].侯文峰, 曾东颖, 敖以全. 基于柔性电路板材的PCB微钻优化[J]. 工具技术, 2015, 49(3): 32-35.
[3].兰岚, 王翀, 王朋举, 等. 新型酸铜电镀加速剂MA的应用研究[J]. 电镀与精饰, 2023, 45(12): 64-70.
[4].夏威, 廖小茹, 洪捷凯, 等. 高电流密度通孔电镀铜用抑制剂的研究[J]. 电镀与涂饰, 2023, 42(11): 43-49.
[5].Wang C, An M, Yang P, et al. Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations[J]. Electrochemistry Communications, 2012 (18): 104-107.
[6].Li X, Yin X, Li J, et al. Synthesis of coplanar quaternary ammonium salts with excellent electrochemical properties based on an anthraquinone skeleton and their application in copper plating[J]. Electrochimica Acta, 2023(437): 141541.
[7].Jin L, Zheng A N, Wang M, et al. Insights into the synergistic effects of safranine in an acidic copper bath on through-hole void-free filling for high-quality electronics interconnection[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023(671): 131706.
[8].Chang Y H, Tseng P L, Lin J C, et al. Communication-defect-free filling of high aspect ratio through vias in ultrathin glass[J]. Journal of the Electrochemical Society, 2018, 166(1): 3155-3157.
[9].Dow W P, Liu D H, Lu C W, et al. Through-hole filling by copper electroplating using a single organic additive[J]. Electrochemical and Solid-State Letters, 2010, 14(1): 13-15.
[10].Chen C H, Lu C W, Huang S M, et al. Effects of supporting electrolytes on copper electroplating for filling through-hole[J]. Electrochimica Acta, 2011, 56(17): 5954-5960.
[11].Yan J J, Chang L C, Lu C W, et al. Effects of organic acids on through-hole filling by copper electroplating[J]. Electrochimica Acta, 2013, 109(11): 1-12.
[12].Musa A Y, Mohamad A B, Takriff M S, et al. Electrochemical and quantum chemical studies on phthalhydrazide as corrosion inhibitor for mild steel in 1 M HCl solution[J]. Research on Chemical Intermediates, 2012, 38(2): 453-461.
[13].Khaled K F. Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion[J]. Materials Chemistry and Physics, 2010, 124(1): 760-767.
[14].Lai Z, Wang S, Wang C, et al. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochimica Acta, 2018(273): 318-326.
[15].Iravani D, Esmaeili N, Berisha A, et al. The quaternary ammonium salts as corrosion inhibitors for X65 carbon steel under sour environment in NACE 1D182 solution: Experimental and computational studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023(656): 130544.
[16].Gece G. The use of quantum chemical methods in corrosion inhibitor studies[J]. Corrosion science, 2008, 50(11): 2981-2992.
[17].Wang F, Le Y. Experiment and simulation of single inhibitor SH110 for void-free TSV copper filling[J]. Scientific Reports, 2021, 11(1): 12108.
[18].Lai Z, Wang S, Wang C, et al. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Computational Materials Science, 2018(147): 95-102.
[19].Ogutu P, Fey E, Dimitrov N. Superconformal filling of high aspect ratio through glass vias (TGV) for interposer applications using TNBT and NTBC additives[J]. Journal of the Electrochemical Society, 2015, 162(9): 457-464.
[20].Lin Y T, Wang M L, Hsu C F, et al. Through-hole filling in a Cu plating bath with functional insoluble anodes and acetic acid as a supporting electrolyte[J]. Journal of The Electrochemical Society, 2013, 160(12): 3149-3153.
[21].彭佳. 电沉积构建印制电路薄介质型通孔互连的研究[D]. 成都: 电子科技大学, 2017.