Zhang Fuming,Ren Zhichao*,Zhang Qiusheng,et al.Analysis and control research of zinc slag of hot-base galvanizing[J].Plating & Finishing,2025,(04):50-57.
doi: 10.3969/j.issn.1001-3849.2025.04.008热基镀锌脱锌缺陷分析及控制研究
- Title:
- Analysis and control research of zinc slag of hot-base galvanizing
- 分类号:
- TG113.25
- 文献标志码:
- A
- 摘要:
- 热基镀锌超厚规格生产中,频发折弯脱锌缺陷。通过扫描电子显微镜(SEM)分析脱锌产生的机理,发现抑制层位置存在氧元素富集现象;并根据6σ的方法筛选出产生脱锌的关键因子主要为炉压波动和热值波动。对关键因子深入分析,借助计算机辅助系统Fluent软件,模拟炉内快冷气体流场,模拟结果显示调整快冷喷嘴角度和吸风口位置可改善炉压波动;通过上述两点改善,实现了辊室炉压从最低0 Pa提高至100 Pa。针对热值波动范围3 550~4 150 kcal·N?1·m?3的问题,根据焦炉煤气热值测量值,建立天然气的与焦炉煤气混合比的计算模型,实现了焦炉煤气热值稳定至(4 060±100) kcal·N?1·m?3。经以上措施有效解决了热基镀锌超厚规格带钢脱锌缺陷,脱锌废品率由0.285%降低至0.013%,对其它卧式退火炉控制该缺陷具有借鉴意义。
- Abstract:
- In the production of hot base galvanized ultra-thick specifications, there are frequent bending and dezincification defects. The mechanism of dezincification was analyzed by scanning electron microscopy (SEM), and it was found that there was oxygen enrichment at the inhibiting layer. According to the method of 6σ, the key factors of dezincification are mainly furnace pressure fluctuation and calorific value fluctuation. Through in-depth analysis of key factors, the flow field of fast-cooling gas in the furnace was simulated with the help of computer aided system Fluent software. The simulation results showed that adjusting the Angle of the fast-cooling nozzle and the position of the suction can improve the pressure fluctuation of the furnace. Through the above two improvements, the furnace pressure of the roller chamber is increased from the lowest 0 to 100 Pa. Aiming at the calorific value fluctuation range of 3 550-4 150 kcal·N?1·m?3, the calculation model of the mixture ratio of natural gas and coke oven gas was established according to the measured calorific value of coke oven gas, and the calorific value of coke oven gas was stabilized to (4 060±100) kcal·N?1·m?3. Through the above measures, the dezincification defect of hot base ultra-thick zinc strip steel is effectively solved, and the dezincification waste rate is reduced from 0.285% to 0.013%, which has reference significance for other horizontal annealing furnaces to control the defect
参考文献/References:
[1].弓俊杰. 热镀锌铝镁镀层板发展及河钢唐钢应用现状[J]. 河北冶金, 2020(12): 1-8.
[2].宋雅琼. 热基镀锌产品表面质量优化研究[D]. 唐山: 华北理工大学, 2017.
[3].Peng S, Xie S K, Lu J T, et al. Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating[J]. Journal of Alloys & Compounds, 2017, 11(2): 726-728.
[4].李九龄. 带钢连续热镀锌[M]. 北京: 冶金工业出版社, 2019.
[5].孙乾. 冷轧镀锌退火炉内气氛研究[J]. 工业加热, 2024, 53(6): 32-34.
[6].范春磊. 邯钢改良森吉米尔法热镀锌机组脱锌原因分析及对策[J]. 金属材料及热处理, 2020(4): 38-40.
[7].李远鹏, 江社明, 张启富, 等. 高强度热镀锌双相钢的可镀性问题研究[J]. 钢铁研究学报, 2012, 24(4): 1-5.
[8].Huang Geng. Analysis of stamping dezincification of DP590 alloyed hot dip galvanized dual phase steel[J]. Journal of Physics, 2022, 2390(1): 012015.
[9].张青. 无锌花热基镀锌折弯脱锌成因分析及控制[J]. 河北冶金, 2022(10): 39-44.
[10].李研, 崔阳, 徐海卫, 等. 双相钢热镀锌表面漏镀缺陷分析及对策[J]. 电镀与涂饰, 2013, 32(5): 32-34.
[11].许红. 新型锌铝镁合金镀层工艺及其耐蚀机理的研究[D]. 济南: 山东大学, 2019.
[12].李娇娇. 钢基表面状态对热镀锌层组织的影响[D]. 天津: 河北工业大学, 2019.
[13].Khaidarov T. B. Development of a dezincing method for iron-containing wastes by heat treatment in a reducing atmosphere[J]. Refractories and Industrial Ceramics. 2022, 62(6): 706-710.
[14].郑艳坤. 热镀锌DP980脱锌原因分析及措施[J]. 金属世界, 2023(4): 6-11.
[15].颜飞, 陈莹莹, 邓照军, 等. 氧元素对热镀锌双相钢锌层附着力的影响[J]. 武汉科技大学学报, 2013, 36(5): 370-374.
[16].谢天华. 改良森吉米尔法退火炉中带钢的氧化研究[J]. 工业加热, 2015, 44(1): 39-40, 51.
[17].姜嘉玮. 从表面处理形式分析冷轧热镀锌板冲压脱锌原因及解决方案[J]. 山西冶金, 2023, 46(9): 51-53.
[18].郭强. 镀锡基板生产连续退火炉压力波动原因分析及治理[J]. 电镀与涂镀, 2021, 40(7): 529-532.
[19].马骏. 热基镀锌线改良森吉米尔法加热炉NOF段控制方法的改进[J]. 山西冶金, 2016, 39(2): 59-63.
[20].熊自柳. 热基热镀锌板锌层粘附性控制机理[J]. 热加工工艺, 2016, 45(14): 110-113, 116.