Chen Hong,Wu Yu,Wang Chunxia*.Effect of impurity copper ions on the performance of cadmium titanium plating without cyanide electroplating of 300M ultra-high strength steel[J].Plating & Finishing,2025,(04):83-89.
doi: 10.3969/j.issn.1001-3849.2025.04.013杂质铜离子对300M超高强度钢无氰电镀
- Title:
- Effect of impurity copper ions on the performance of cadmium titanium plating without cyanide electroplating of 300M ultra-high strength steel
- 分类号:
- TQ153.1
- 文献标志码:
- A
- 摘要:
- 无氰电镀镉钛工艺在航空工业领域获得了广泛的应用,然而镉钛镀液容易引入杂质铜离子,进而致使镀液呈现红色。为深度探究杂质铜离子带来的影响,通过阴极极化曲线和循环伏安曲线测试镀液的阴极过程,借助场发射电子显微镜以及 X 射线衍射仪对镀层的微观结构予以了分析,运用塔菲尔曲线剖析了镀层的耐蚀性,并且通过渗氢曲线和钛含量测试解析了镀层的抗氢脆性能。其结果显示:杂质铜离子会让镀层表面趋向粗糙,一旦镀液中的杂质铜离子浓度超出 0.078 g/L ,镀层的晶粒尺寸就会增大,镀层中的钛含量降低,镀层的耐蚀性会陡然下降,抗渗氢的能力也会随之减弱。
- Abstract:
- The cyanide-free cadmium-titanium plating process has been widely used in the aviation industry. However, cadmium-titanium plating solution is prone to introduce impurity copper ions, which in turn causes the bath to appear red. In order to deeply explore the influence of impurities of copper ions, the cathode process of the plating solution was tested by cathodic polarization curve and cyclic voltammetry curve, the microstructure of the coating was analyzed by field emission electron microscopy and X-ray diffractometer, the corrosion resistance of the coating was analyzed by the Tafel curve, and the hydrogen embrittlement resistance of the coating was analyzed by the hydrogen infiltration curve and titanium content test. The results show that the impurity copper ions will make the surface of the coating rougher, and once the concentration of impurity copper ions in the plating solution exceeds 0.078 g/L, the grain size of the coating will increase, the titanium content in the coating will decrease, the corrosion resistance of the coating will decrease sharply, and the resistance to hydrogen permeation will also be weakened
参考文献/References:
[1].宣晓东. 高强度钢的表面防护及氢脆问题[J]. 电镀与精饰, 1998(3): 27-29.
[2].刘仁志. 无氰电镀工艺技术现状[J]. 表面工程资讯, 2004, 4(3): 1-3.
[3].李江, 李博, 焦遥, 等. AF1410超高强度钢表面防护工艺研究[J]. 新技术新工艺, 2020(8): 23-26.
[4].郝江华, 高晓颖, 王浩军, 等. 不同钢铁表面无氰镀镉钛和氰化镀镉钛镀层性能差异[J]. 电镀与精饰, 2024, 46(4): 59-65.
[5].李旭勇, 李琼, 魏娜, 等. 无氰镉钛镀液中钛离子浓度对镀层性能的影响[J]. 电镀与精饰, 2023, 45(12): 15-24.
[6].郭崇武, 王小东. 氯化钾无氰镀镉故障分析与处理[J]. 电镀与涂饰, 2017, 36(23): 1271-1272.
[7].航空航天工业部621所, 北京航空学院, 372厂. HB/Z 107—1986 高强度钢零件低氢脆镀镉-钛工艺[S]. 行业标准-航空. 1986.
[8].张玉清, 王春霞, 吴光辉, 等. 电流密度对无氰镉-钛合金镀层的影响[J]. 电镀与精饰, 2017, 39(10): 38-41.
[9].郝江华, 刘煜. 无氰镀镉钛工艺研究及应用[J]. 世界有色金属, 2020(3): 194-195.
[10].张玉清, 陈同彩, 王春霞, 等. 添加剂对无氰镀镉工艺性能的影响[J]. 电镀与精饰, 2021, 43(8): 16-20.
[11].谭小生, 王春霞, 曹鑫帅, 等. 脂肪醇聚氧乙烯醚硫酸钠对电沉积铜薄膜性能的影响[J]. 表面技术, 2021, 50(8): 366-374, 403.
[12].张玉清. EDTA体系电镀镉及镉—镍合金工艺及性能研究[D]. 南昌: 南昌航空大学, 2021.
[13].汤智慧, 张晓云, 陆峰, 等. 镀层结构与氢脆关系研究[J]. 材料工程, 2006(10): 37-42.
[14].陈琛骞, 张文娟, 夏柳, 等. 镉电解沉积过程中共存阳离子的反应行为[J]. 有色金属科学与工程, 2023, 11(7): 1-10.
[15].肖涛, 谢焕钧, 柳鑫, 等. 柠檬酸铵对5, 5-二甲基乙内酰脲配位体系碱性无氰镀镉的影响[J]. 电镀与精饰, 2023, 45(8): 46-51.
[16].郭敏, 彭乔. 钛及其合金的氢脆腐蚀[J]. 辽宁化工, 2001(8): 345-348.
[17].罗明生, 陈玮, 潘梓鑫, 等. 钛离子对无氰电镀镉耐蚀性能的影响[J]. 材料保护, 2022, 55(11): 78-82.
[18].林茜. 无氰电镀镉-钛合金工艺及电沉积行为研究[D]. 南昌: 南昌航空大学, 2017.
[19].施雨湘. 分析氢渗透曲线的方法[J]. 武汉水运工程学院学报, 1986(1):75-84.
相似文献/References:
[1]李旭勇,陈 韦,张东升,等.doi: 10.3969/j.issn.1001-3849.2025.01.003 pH对无氰电镀镉钛合金性能的影响[J].电镀与精饰,2025,(01):15.
Li Qiong,Xu Xueyuan,Wang Chunxia*.Effect of pH on properties of cadmium titanium alloy electroplated without cyanide Li Xuyong1, Chen Wei1, Zhang Dongsheng1, Wu Qunying1,[J].Plating & Finishing,2025,(04):15.