Zhou Fangxu,Li Guangyu*.Effect of functional additive combination on antimicrobial property of water-based metalworking fluids[J].Plating & Finishing,2025,(04):107-112.
doi: 10.3969/j.issn.1001-3849.2025.04.017功能性添加剂组合对水基金属加工液抗菌性的影响
- Title:
- Effect of functional additive combination on antimicrobial property of water-based metalworking fluids
- Keywords:
- metal working fluid; functional additive; microbicide; special amines
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 针对水基金属加工液容易产生细菌从而导致加工液失效的问题,研究了不同种功能性添加剂对金属加工液抑菌性的影响。将现场取回的已失效加工液进行扩菌培养,采用测菌片测试菌数含量,通过电子显微镜观察微生物被抑制情况,对比了多种添加剂及其复配组合的抗菌性能。实验结果表明,5% BA、3% DCHA与2% MBM三种添加剂复配的抑菌效果最佳,由于特种胺与硼酸的加入,有效地提升了加工液体系的抗菌性能。通过分析各类添加剂的抑菌机理,探讨了添加剂复配后产生的协同效应,得出不同类型添加剂的有效组合对增强加工液的抗菌性具有积极作用。
- Abstract:
- Aiming at the problem that water-based metalworking fluids are contaminated by microorganism, which can lead to fluid failure, this study was conducted to investigate the effect of different functional additives on the microbiocidal property of metalworking fluids. The waste metalworking fluids collected from the site was cultured to expand microorganism. The bacterial content was tested by bacterial counting slides, and the microorganism inhibition was observed under an electron microscope, to compare the microbiocidal properties among various additives and their compound combinations. Experimental results show that the combination of three microbicides, namely 5% BA, 3% DCHA, and 2% MBM, exhibits the best microbiocidal effect. Adding special amines and boric acid effectively enhances the microbiocidal performance of metal working fluids. By analyzing the microbiocidal mechanisms of various additives, it is explored that the synergistic effect of the various additives compounding has a positive effect on enhancing the microbiocidal properties of metalworking fluids.
参考文献/References:
[1].申媛媛, 董耀华, 李庆宏, 等. 铝合金在切削乳化液中的微生物腐蚀行为研究[J]. 表面技术, 2021, 50(4): 275-284.
[2].刘伟康, 郭春梅, 姜鹏飞, 等. 环保型环烷基油金属切削液的开发与应用[J]. 石化技术与应用, 2024, 42(2): 100-103.
[3].戴媛静, 王宇, 周玥. “双碳”趋势下金属加工液的发展[J]. 中国科技信息, 2023(10): 121-124.
[4].Saha R, Donofrio R S. The microbiology of metalworking fluids[J]. Applied Microbiology and Biotechnology, 2012, 94: 1119-1130.
[5].Tang L Z, Zhang Y B, Li C H, et al. Biological stability of water-based cutting fluids: progress and application[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 3.
[6].Rao D N, Srikant R R, Srikant P N. Effect of emulsifier content on microbial[J]. Int. J. Machining and Machinability of Materials, 2007, 2(3): 469-477.
[7].李庆宏, 杨懿, 吴泽奇, 等. 切削液的微生物劣化对碳钢耐腐蚀行为的影响[J]. 润滑与密封, 2020, 45(10): 14-21.
[8].Passman F J, Küenzi P. Microbiology in water-miscible metalworking fluids[J]. Tribology Transactions, 2020, 63(6): 1147-1171.
[9].Rabenstein A, Koch T, Remesch M, et al. Microbial degradation of water miscible metal working fluids[J]. International Biodeterioration & Biodegradation, 2009, 63(8): 1023-1029.
[10].Martino P D. Ways to improve biocides for metalworking fluid[J]. Aims Microbiology, 2021, 7(1): 13-27.
[11].王晓菲. 水基切削液杀菌剂的合成及性能评价[J]. 化工技术与开发, 2017, 46(6): 26-28.
[12].Trafny E A., Lewandowski R, Koz?owska K, et al. Microbial contamination and biofilms on machines of metal industry using metalworking fluids with or without biocides[J]. International Biodeterioration & Biodegradation, 2015, 99: 31-38.
[13].Selvaraju S B, Khan I U H, Yadav J S. Susceptibility of mycobacterium immunogenum and pseudomonas fluorescens to formaldehyde and non-formaldehyde biocides in semi-synthetic metalworking fluids[J]. International Journal of Molecular Sciences, 2011, 12(1): 725-741.
[14].李春风, 罗新民. 金属加工液中控制微生物方法初探[J]. 润滑油, 2005, 20(1): 21-24.
[15].李广宇, 李春惠, 张芒芒, 等. 复合杀菌剂对水基切削液抗菌性能影响的研究[J]. 化学与黏合, 2015, 37(2): 85-90.
[16].李庆宏, 韩明眸, 申媛媛, 等. 微生物对切削液稳定性的影响[J]. 润滑与密封, 2021, 46(3): 11-16.
[17].程慧杰, 赵朋飞, 李小磊, 等. 植物油基金属加工液中的生物抑菌技术研究[J]. 润滑与密封, 2021, 46(11): 122-131.
[18].张秀妍, 马琳, 郝佳. 水基切削液杀菌剂的合成及杀菌性能研究[J]. 应用科技, 2008, 16(5): 15-16.
[19].杨兰, 曾诗琪, 熊星, 等. 水基金属加工液中微生物多样性研究[J]. 华东理工大学学报(自然科学版), 2022, 48(5): 641-648.
[20].寇然, 金一丰, 周扬, 等. 苯氧乙醇的纯化工艺研究[J]. 精细化工中间体, 2021, 51(1): 40-44.
[21].Morente E O, Fernández-Fuentes M A, Burgos M J G, et al. Biocide tolerance in bacteria[J]. International Journal of Food Microbiology, 2013, 162(1): 13-25.
[22].鲍沂沂, 李谨, 刘庆坤. 金属切削液杀菌剂综述[J]. 合成润滑材料, 2022, 49(4): 29-32.
[23].李玮, 马涛, 王森, 等. 硼酸酯在水基切削液中的应用[J]. 工具技术, 2010, 44(5): 93-95.
备注/Memo
水基加工液中微生物包括细菌和真菌,其中主要含有肺炎球菌、金黄色葡萄球菌、大肠埃希菌等细菌以及曲霉、酵母等真菌[5,15]。加工液中微生物含量过高,快速分解有机物,有效组分被消耗殆尽,就会造成pH值降低[16],这是导致切削液失效的最主要的原因。因此,为了解决加工液微生物稳定性的问题,目前较为主流的方法是在体系中加入杀菌剂或功能添加剂来进行抑制细菌和真菌的滋生[11,17-18],根据杀菌机理的不同分为释放甲醛型、异噻唑啉酮型、含硼类以及胺类[5,19]。然而,不同抑菌剂对于加工液的微生物稳定性的影响也不尽相同,本文主要探究了杀菌剂与添加剂之间的复配组合对于金属加工液抑菌的影响,对各组试验液进行了性能评价,并分析探讨了各种添加剂的杀菌机制,为未来提升加工液抗菌性能提供新的思路与参考。