Liu Yang,Hao Jianjun*.Study on hydrogen evolution performance of nickel-cobalt plating with ChCl-LA low comelt solvent[J].Plating & Finishing,2025,(05):53-58.
doi: 10.3969/j.issn.1001-3849.2025.05.008ChCl-LA低共熔溶剂电沉积镍钴镀层析氢性能研究
- Title:
- Study on hydrogen evolution performance of nickel-cobalt plating with ChCl-LA low comelt solvent
- 分类号:
- TQ153
- 文献标志码:
- A
- 摘要:
- 本文在氯化胆碱(ChCl)-乳酸(LA)体系下,研究在相同沉积量下不同金属镀层对析氢催化性能的影响,并通过扫描电子显微镜(SEM)进行微观形貌观察,X射线衍射仪(XRD)进行物相结构分析,阴极极化曲线测试(HER)、电化学极化测试(Tafel)以及交流阻抗测试(EIS)进行性能表征。结果表明:3种镀层晶形均为多边形结构,晶体由面心立方结构的单质Ni或Co组成,均择优于(220)晶面生长,且Ni-Co合金(200)晶面位置的特征峰总是位于纯镍和纯钴(200)晶面的特征峰之间。在相同沉积量下,3种镀层中Ni-Co镀层具有最低的析氢过电位178.9 mV,最小的析氢反应容抗弧半径,最低的腐蚀电流密度1.452×10–6 A/cm2以及最高的阻抗值2 410 Ω,析氢催化性能及耐蚀性能最优。
- Abstract:
- In this paper, the effect of different metal coatings on thehydrogen evolution catalytic performance under the same deposition amount in the choline chloride ( ChCl)-lactic acid (LA) system was studied. The microstructure was observed by scanning electron microscope (SEM), the phase structure was analyzed by X-ray diffraction (XRD), and the performance was characterized by cathodic polarization curve test (HER), electrochemical polarization test ( Tafel) and AC impedance test (EIS).The results show that the crystal form of the three coatings is polygonal structure, and the crystal is composed of face centered cubic Ni or Co, which is better than (220) crystal face growth, and the characteristic peak of Ni-Co alloy (200) crystal face position is always between the characteristic peak of pure nickel and pure cobalt (200) crystal face. Under the same deposition amount, Ni-Co coating has the lowest hydrogen evolution overpotential of 178.9 m V, the smallest hydrogen evolution reaction capacitive reactance arc radius, the lowest corrosion current density of 1.452×10–6 A/cm 2 and the highest impedance value of 2 410 Ω, with the best hydrogen evolution catalytic performance and corrosion resistance
参考文献/References:
[1].罗佐县, 曹勇. 氢能产业发展前景及其在中国的发展路径研究[J]. 中外能源, 2020, 25(2):9-15.
[2].Morales-guio C G, Stern L A, Hu X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical Society Reviews, 2014, 43(18): 6555-6569.
[3].陈梦洁, 芦思珉, 龙亿涛. 单个钯纳米颗粒在析氢反应中的本征电催化活性追踪[C]//中国化学会(Chinese Chemical Society), 中国仪器仪表学会. 中国化学会第十四届全国电分析化学学术会议会议论文集(第二分册). 南京大学化学化工学院生命分析化学国家重点实验室; 2020:2.
[4].Yang Y, Zhao X, Mao H, et al. Nickel-doped MoSe2 nanosheets with Ni-Se bond for alkaline electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2020, 45(18):10724-10728.
[5].Xu B, Sun Y, Chen Z, et al. Facile and large-scale preparation of Co/Ni-MoO2 composite as high-performance electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(45):20721-20726.
[6].Cheng D H, Xu W Y, Hua L Q, et al. Electrochemical preparation & mechanical properties of amorphous nickel-sic composites[J]. Plating & Surface Finishing, 1998, 85(2): 61-63.
[7].Polley, G T. Use of crude oil fouling threshold data in heat exchanger design[J]. Applied Thermal Engineering, 2002, 22(7):763-776.
[8].钟声, 宋婷, 张钰瑞, 等. 离子液体电沉积[J]. 中国科学: 化学, 2023, 53(10):2008-2026.
[9].孙正洋. 离子液体中电沉积钴与钴镍合金及其析氢催化性能的研究[D]. 株洲:湖南工业大学, 2019.
[10].杜婵. 低共熔溶剂中电沉积钴基镍基稀土镁合金及性能研究[D]. 西宁:青海师范大学, 2021.
[11].Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures. Chemical Communication, 2003(1):7071.
[12].赵丽晴, 毛昂, 孙星, 等. 在低转变温度氯化胆碱-乳酸混合物中电沉积锡层的研究[J].热处理, 2020, 35(1):10-14.
[13].Yan W, Wang D, Botte G G. Template-assisted synthesis of Ni-Co bimetallic nanowires for urea electrocatalytic oxidation[J]. Journal of Applied Electrochemistry, 2015, 45:1217-1222.
[14].Tang J, Zhao X, ZUO Y, et al. Electrodeposition Pd-Ni-Mo film as a cathode material for hydrogen evolution reaction[J]. Electrochimica Acta, 2015, 174:1041-1049.
[15].闫巍, 余智勇, 宋海燕, 等. 钛基镍钴合金电极的制备及析氢性能[J]. 表面技术, 2017, 46(4):222-227.
[16].傅献彩, 沈文霞, 姚天扬. 物理化学[M]. 北京: 高等教育出版社, 1990:659.